Drinking Water Quality Management Plan (DWQMP) Annual Report 2022/23 **OUR COMMUNITIES** **OUR FUTURE** # **Drinking Water Quality Management Plan Report** #### **Western Downs Regional Council** **SPID: 480** | 20 | 022 - 2023 | |----------------------|----------------------| | Details | Information | | SPID | 480 | | Postal Address | PO Box 551 | | | DALBY QLD 4405 | | Telephone | 07 4679 4000 | | E-mail | info@wdrc.qld.gov.au | | Water Supply Schemes | Bell | | | Chinchilla | | | Condamine | | | Dalby | | | Jandowae | | | Miles | | | Tara | | | Wandoan | | | Warra | This report has been prepared following the Drinking Water Quality Management Plan Report Guidance Note. # **Table of Contents** | 1 | Introduction | 4 | |-----|---|----| | 2 | Summary of scheme/s operated | 5 | | 3 | DWQMP implementation | 8 | | 3.1 | Process Review Program | 9 | | 3.2 | Water Quality Data Program | 9 | | 3.3 | Reservoir Inspection Program | 10 | | 3.4 | Risk Management Improvement Program | 11 | | 4 | Verification Monitoring - Water Quality Information and Summary | 21 | | 4.1 | Disinfection By-Products | 22 | | 4.2 | Fluoride | 31 | | 4.3 | Pesticides | 32 | | 4.4 | Microbiology | 41 | | 4.5 | Standard Chemical Analysis | 44 | | 5 | Compliance with Annual E.coli Rolling Annual Value | 70 | | 6 | Incidents reported to the Regulator | 79 | | 7 | Customer complaints | 83 | | 8 | DWQMP review outcomes | 84 | | 9 | DWQMP audit outcomes | 84 | | | | | # **Table of Figures** | TABLE 2-1- SUMMARY OF SCHEMES | ნ | |--|----| | Table 3-1 - Reservoir Inspection Program | 10 | | TABLE 3-2 - RISK MANAGEMENT IMPROVEMENT PROGRAM IMPLEMENTATION STATUS AS OF 30 JUNE 2023 | 11 | | TABLE 4-1 - DISINFECTION BY-PRODUCTS | 22 | | TABLE 4-2 - FLUORIDE | 31 | | TABLE 4-3 - PESTICIDES | 32 | | TABLE 4-4 - MICROBIOLOGY | 41 | | TABLE 4-5 - STANDARD CHEMICAL ANALYSIS | 44 | | TABLE 5-1 - COMPLIANCE WITH ANNUAL E.COLI ROLLING ANNUAL VALUE | 70 | | TABLE 6-1 - INCIDENTS REPORTED TO THE REGULATOR | 79 | | TABLE 7-1 - CUSTOMER COMPLAINTS (WATER QUALITY) | 83 | #### 1 Introduction This is the Drinking Water Quality Management Plant (DWQMP) report for Western Downs Regional Council (WDRC) for the year 2022 - 2023. WDRC is a registered service provider with Service Provider Identification Number - SPID number 480. WDRC is operating under an approved DWQMP to ensure consistent supply of safe quality drinking water to protect public health. This is done through the proactive identification and minimization of public health related risks associated with drinking water. This DWQMP report includes: - The summary of the schemes managed under the DWQMP - The programs monitored through the operation of the DWQMP - Process Review Program - Reservoir Inspection - Water Quality Review Data - Customer Complaints Review including dirty water complaints - Risk Management Improvement Program - Verification Monitoring through the DWQMP - Water Quality Information and Summary - Compliance with Annual E. coli Rolling Annual Value - Incidents reported to the Regulator - Customer complaints - DWQMP outcomes - DWQMP Review - DWQMP Audit This report is submitted to the Regulator to fulfil our regulator requirement and is also made available to our customers through our website, www.wdrc.qld.gov.au or for inspection upon request at Council offices. Click or tap here to enter text. ### 2 Summary of scheme/s operated The Western Downs Regional Council (WDRC) operates nine drinking water supplies within an area of 38,000 square kilometres. During 2022 - 2023 WDRC supplied 3266.3ML of potable water to 11 073 connections and maintained over 411.64km of reticulation mains. WDRC's drinking water schemes utilise a range of different sources and infrastructure. Individual plants source their raw water from bores, dams and/or river systems. Treatment processes vary from plant to plant; region wide they include clarification, filtration and/or reverse osmosis desalination. All networks are pressurised on demand by pumping stations and/or high lift towers. Water is disinfected with chlorine before entering WDRC's reticulation networks. Individual consumption is metered for all customers. Table 2-1- Summary of Schemes | Scheme | Water Source | Treatment processes | Treatment capacity | Length of
Mains (km) | Towns
Supplied | Population | Connections | |------------|--|--|--------------------|-------------------------|-------------------|------------|-------------| | Bell | Surface water - Koondaii Dam Ground water - Racecourse Bore Eastplain Bores consisting of Koondaii Bore x 2 Warmga Bore Cattle creek Bore | Bell WTP - Aeration, flocculation, sedimentation, filtration, carbon dosing | 0.35ML/day | 9.6 | Bell | 360 | 190 | | Chinchilla | Surface water - Chinchilla Weir (Condamine River) | Process includes, potassium permanganate dosing flocculation, clarification, ultrafiltration, UV sterilisation and activated carbon and fluoridation. Activated carbon is only used during periods of blue-green algae outbreaks in the storage when pesticides are detected or other water quality issues for which carbon usage may be beneficial | 5.04 ML/day | 100.8 | Chinchilla | 5,490 | 3,166 | | Condamine | Surface Water - Condamine Weir | Condamine WTP - Activated carbon (if needed), flocculation, clarification, filtration, disinfection. | 0.5 ML/day | 6.2 | Condamine | 210 | 120 | | Dalby | Surface Water - Loudoun Weir on
Condamine River
Ground water - Alluvial 'A' Bores
Alluvial 'B' Bores | Dalby Water Treatment Plant Filtration plant- Rapid mix, flocculation/coagulation, sedimentation, activated carbon, filtration, disinfection, fluoridation. Alluvial 'A'-disinfection and fluoridation. RO desalination- UV, multimedia filtration, cartridge filtration, 2 stage reverse osmosis, air stripping, blending/stabilisation/ pH adjustment, disinfection, fluoridation. RO concentrate reprocessing-cartridge filtration, single stage RO, air stripping, blending, disinfection, fluoridation. | 10.8 ML/day | 181.2 | Dalby | 11,020 | 5,275 | | | Surface water - Jandowae Dams | Jandowae WTP - | 0.96 ML/day | | | | | | Scheme | Water Source | Treatment processes | Treatment capacity | Length of
Mains (km) | Towns
Supplied | Population | Connections | |----------|---|---|--------------------|-------------------------|-------------------|------------|-------------| | Jandowae | Groundwater - Jandowae Bores | Aeration, flocculation, clarification, filtration, pH adjustment Bore water is not treated apart from aeration and disinfection | | 27.4 | Jandowae | 1,100 | 486 | | | Surface water - Gil Weir on Dogwood creek | prior to supply Miles- Filtration Plant - Aeration, flocculation, clarification, filtration, fluoridation | 1.6 ML/day | | | | | | Miles | Groundwater - Miles Bore | Miles RO plant - Cooling, UV, Media Filtration, Cartridge Filtration, 2 stage reverse osmosis, blending, pH adjustment, stabilisation, disinfection | 417kL/day | 38.6 | Miles | 1,460 | 911 | | | Surface water - Tara Lagoons | Tara WTP A- Flocculation, clarification, Filtration | 500kL/day | | | | | | Tara | Groundwater - Tara Bores 1 & 2 | Tara RO Plant - Pre-treatment - chloramination, UV,
Ultrafiltration, 2 stage RO, blending, pH adjustment,
stabilisation | 360kL/day | 23.4 | Tara | 1,150 | 482 | | Wandoan | Groundwater - Wandoan Bores 1 & 2 | Train 1 Cooling, Aeration, flocculation, inclined plate sedimentation, filtration, and disinfection. (Currently mothballed). Train 2 Cooling, Aeration, KMNO4, BIRM media, and disinfection. (Currently mothballed). Train 3 Cooling, Aeration, Oxidation, flocculation inclined plate sedimentation filtration and disinfection. | 1.0 ML/day | 20.4 | Wandoan | 500 | 374 | | Warra | Surface Water - Warra Weir and off stream storage (Warra Dam) | Warra WTP Ultrafiltration, pre-dosing with alum, potassium permanganate or powdered activated carbon is possible. | 200kl/day | 4 | Warra | 150 | 69 | ### 3 DWQMP implementation The actions undertaken to implement the DWQMP are summarised below. The implementation of the Drinking Water Quality Management Plan (DWQMP) during the 2022 - 2023, is divided into the following categories: - 1. Process Review Program - 2. Reservoir Inspection - 3. Water Quality Review Data - 4. Customer Complaints Review including dirty water complaints - 5. Risk Management Improvement Program The following information highlights the work undertaken within 2022 - 2023 for each of the mentioned programs. #### 3.1 Process Review Program 36 process reviews were performed during 2022 - 2023. The purpose of the reviews was either Routine or Special. The reviews were conducted by a review team generally lead by Utilities Treatment Principal and were completed via a plant visit or online. The components of the Process Reviews are found below:
Internal Testing Data - Standard Chemical Analysis - Flow and Power Logs Chemical Usage Records - Microbiological Reports - Calibration Logs Maintenance Records - Operators Logbook - Online Process Log Network Testing Found Safety Issues #### 3.2 Water Quality Data Program 27 water quality process reviews were performed during 2022 - 2023. The reviews evaluated the weekly water quality for the drinking water schemes. Results of pH; Conductivity; Free Residual Chlorine and Internal E.coli results was included in the review; along with commentary; the reviews are emailed to the Treatment Coordinators following the completion of the review. # 3.3 Reservoir Inspection Program Table 3-1 - Reservoir Inspection Program | Scheme | Clear Water Tank | Low Level Reservoir/s | Elevated Storage | |------------|------------------|-----------------------|-------------------| | Bell | Clear Water Tank | | | | Chinchilla | | Industrial Park | | | Condamine | | | | | Dalby | Clearwater Res | Edward St Res | Owen Street Tower | | Jandowae | Clear Water Tank | | | | Miles | | | | | Tara | | | | | Wandoan | | | | | Warra | | | | # 3.4 Risk Management Improvement Program Table 3-2 - Risk management improvement program implementation status as of 30 June 2023 | Town | Improvement
Action No. | Scheme
Component | Hazard /
Hazardous
Event | Priority | Actions | Revised
Target Date | Original
Target
Date | Estimated
Cost | Improvement
Action Reference | Responsibility | Status | Comments | |----------------|---------------------------|---------------------|--|----------|---|------------------------|----------------------------|---------------------|---------------------------------|------------------------------|---|--| | Bell | BIA 12 | Chemical dosing | Inadequate or incorrect dosing causes inadequate disinfection and or plant performance. | High | Install dosing monitor, duty standby pumps etc. and linked to future SCADA system | 2021 | 2016 | \$50,000 | | Water Treatment
Principal | Partially
completed
. SCADA
installed | With no raw water for several years work was postponed. Settled water turb monitor has been installed as an implied monitoring of coagulant dosing. Hypo dosing has been reworked. | | Bell | BIA 14 | Residuals | Poor quality supernatant returned to the head of the plant causing poor performance | High | Based upon regular monitoring of residuals, install flow meter on residuals return | 2021 | 2016 | \$10,000 | - | Water Treatment
Principal | Project may be dropped because no supernata nt being returned. | Little or no supernatant being returned. With plant out of serevice for long periods due to drought work was put off. | | Bell | BIA 3 | Raw water supply | Changes in raw
water turbidity | High | Online monitor to be linked to future SCADA system | 2020 | 2016 | \$15,000 | - | Water Treatment
Principal | Complete
d | SCADA is being installed at time of review June 2020. Settled water turbidity monitor installed as a substitute | | Bell | BIA 2 | Raw water supply | Changes in raw
water turbidity | High | Install raw water turbidity menitor | Not going to be done | 2014 | \$20,000 | - | Water Treatment
Principal | Complete
d | With plant out of serevice for long periods due to drought work was put off. A settled water turbidity monitor linked to the SCADA was the ultimate solution | | Bell | BIA 4 | Rapid mix | Coagulants not mixed correctly | High | Undertake further study on mixing performance | 2019 | 2014 | \$5,000 | | Water Treatment
Principal | Project
not
currently
required.
Alternativ
e options
implement
ed. | With plant out of serevice for long periods due to drought work was put off. Flow rate was reduced and coagulants changed so that mixing time available was sufficent. A temporary rapid mixer has been added as an experiement permit future testing of alternative coagulants if necessary | | Chinchil
la | CHIA 15 | Disinfection | UV unit is below
the required
output
increasing the
risk of microbial
contamination | High | Interim: Operation of system as is and monitor results. Short Term: Further investigations of operation in enhanced coagulation mode to achieve further improvements in UVT%. Long Term: Resolution by capacity upgrades or system improvements | 2019 | Jul-18 | TBA | - | Supervisor | Complete
d | UV unit duplicated | | Town | Improvement Action No. | Scheme
Component | Hazard /
Hazardous
Event | Priority | Actions | Revised
Target Date | Original
Target
Date | Estimated
Cost | Improvement
Action Reference | Responsibility | Status | Comments | |---------------|------------------------|------------------------------|--|----------|--|--|----------------------------|-------------------|---------------------------------|---------------------------------------|---|---| | Conda
mine | COIA2 | Other (operator skill level) | Water quality
event may be
beyond operator
skill | High | Install off site monitoring
systems. System planned but
deferred | 2020 | - | - | - | Water Treatment
Principal | Complete
d | SCADA is being installed at time of review June 2020. Certified operators perform all operational tasks. Settled water turbidity monitor with shut down authority installed | | Conda
mine | COIA12 | Residuals | Poor quality residuals returned to plant which negatively impacts on process | High | Significant chance of negative impact. Installation of supernatant flow meter Return of spernatant not routinely practiced | 2021 | 2016 | \$20,000 | | Supervisor | System installed but not yet used | Supernatant recycle system installed but manual operation only currently. Will allow return of supernatant to be controlled. System can also be used to operate with tankered CSG water. | | Conda
mine | COIA9 | Chemical
dosing | Incorrect dosing | Medium | Adequate system current exists but could be improved. Install dosing monitoring systemProject to be considered as part of future SCADA up grade | 2022 | 2020 | \$50,000 | | Water Treatment
Principal | Interim
solution in
place | Still being considered as part of future plant upgrade to link to SCADA. Settled water turbidity monitor installed. Chlorine monitor installed plabnned for 2021. Plant has higher level of operator attendance than in the past. | | Conda
mine | COIA4 | Filtration | Turbidity carryover into treated water following backwash | High | No filter to waste capability. Investigate filter return to service performance | Defferred indefinitely. Interim solution in place. | 2013 | \$20,000 | - | Supervisor | Complete
d with
alterantive
solution | Unable to install filter to waste capability at this time. Backwash procedure totally redeveloped to improve backwash performance. A 20 minute filter settle period is allowed after backwash which "ripens" the filter to some extent. | | Conda
mine | COIA5 | Filtration | Turbidity carryover into treated water following backwash | High | No filter to waste capability. Install filter to waste facility Not currently practical to install filter to waste capability. Needs to be a part of a total review of operations. | Completed.
Interim solution
in place | 2019 | - | - | Water Treatment
Principal | Complete
d | Unable to install filter to waste capability at this time. Interim solution in place. See above. | | Conda
mine | COIA6 | Disinfection | Inadequate disinfection | High | Total failure likely. Develop system to monitor tank levels. To be added to part of daily reads | 2022 | - | \$30,000 | - | Supervisor | Complete d and ongoing | Improved monitoring in place | | Conda
mine | COIA7 | Disinfection | Inadequate disinfection | High | Total failure likely . Install dosing monitoring system Project to be considered as part of future SCADA up grade | 2020- | 2019 | \$30,000 | | Water Treatment
Principal | Partially installed. | SCADA installed. Some basic alarms on disinfection system but not fully integrated | | Conda
mine | COIA13 | Alarms | Treatment process failure is undetected and plant | High | No current system. Upgrade the current alarm system to a proper SCADA system. System proposed but deferred to 2019 | Partially
complete. Will
be completed
in 2020 | 2014 | \$50,000 | - | Utilities Senior
Technical Officer | Complete d | SCADA install schduled for completion by end of 2020 | | Town | Improvement Action No. | Scheme
Component | Hazard /
Hazardous
Event | Priority | Actions | Revised
Target Date | Original
Target
Date | Estimated
Cost
| Improvement
Action Reference | Responsibility | Status | Comments | |---------------|------------------------|-----------------------------|--|----------|--|--|----------------------------|------------------------|---------------------------------|------------------------------|--|---| | | | | produces
unsafe water | | | | | | | | | | | Conda
mine | - | Coagulation
/Floculation | High levels of organic carbon in raw water carry over in the treated water and increasing the risk of DBPs when chlorinated | High | Trial operation in enhanced coagulation mode | Completed.
Interim solution
in place | 2021 Trials
only | \$10,000 | - | Water Treatment
Principal | Trial completed | Solution is included in DBP control strategy | | Conda
mine | | Disinfection | High levels of organic carbon in raw water carry over in the treated water and increasing the risk of DBPs when chlorinated | High | Small reservoirs to be rearranged to utilise one as a dedicated chlorine contact tank thereby improving the control of dosing and early detection of excessive or inadequate dosing. | Project replaced with alternative | 2022 | \$30,000 | - | Supervisor | Project to be supersee ded by alternative solution | | | Conda
mine | | | | High | Reservoirs to be equipped with aeration to remove chloroform | Completed by
July 2022 | New item | \$20,000 | | Water Treatment
Principal | Installatio
n
underway | Solution is included in DBP control strategy | | Dalby | DI 7 | Filtration | Turbidity carry
over after
backwash due
to an unusual
filter to waste
process | High | Monitor filter water turbidities as filters return to service. | Ongoing | Ongoing | Operational
Expense | | Operator | Ongoing | | | Dalby | DI 10 | Alarms | Process problems during attended or unattended operation that cause the plant to produce unsafe water. (Applies primarily to the surface water plant only) | High | Compile a list of all current alarms and undertake a function test. Repair if necessary. | 2022 | | \$10,000 | | Supervisor | Partially
Complete
. Whole
project on
hold | Work is proposed as part of electrical and comntrol upgrade Stage 2 | | Dalby | DI 11 | Alarms | Process problems during attended or unattended operation that cause the plant to produce unsafe water. (Applies primarily to the | High | Undertake an alarm risk assessment based on whole of plant scenario. | 2022 | | Operational
Expense | | Water Treatment
Principal | Partially
Complete
. Whole
project on
hold | Work is proposed as part of electrical and control upgrade Stage 2 | | Town | Improvement Action No. | Scheme
Component | Hazard /
Hazardous
Event | Priority | Actions | Revised
Target Date | Original
Target
Date | Estimated Cost | Improvement
Action Reference | Responsibility | Status | Comments | |-------------------------|------------------------|---------------------|---|----------|---|------------------------|----------------------------|------------------------|---------------------------------|------------------------------|--|--| | | | | surface water
plant only) | | | | | | | | | | | Dalby | DI 12 | Alarms | Process problems during attended or unattended operation that cause the plant to produce unsafe water (Applies primarily to the surface water plant only) | High | Implement alarm system changes based on risk assessment. | 2022 | 2015 | \$50,000 | | Water Treatment
Principal | Partially
Complete
. Whole
project on
hold | Work is proposed as part of electrical and control upgrade Stage 2 | | Dalby | DI 9 | Disinfection | Disinfection
system failure
goes
undetected | High | Install dosing system monitors on all dose pumps not already so equipped. | 2022 | 2014 | \$100,000 | | Water Treatment
Principal | Partially
Complete
. Whole
project on
hold | Work is proposed as part of electrical and control upgrade Stage 2 | | Jandow
ae | JIA 13 | Raw water supply | Pesticides and chemicals in raw water supply | High | Monitor raw water supply for pesticides to establish a greater understanding of quantities and types detected done | Ongoing | Immediate | Operational
Expense | DWQMP | Supervisor | Ongoing | This has been incorporated into the regular program | | Jandow
ae | JIA 1 | Raw water supply | Changes in raw water turbidity | High | Daily checking and logging of turbidity Done | Complete | Immediate | Operational
Expense | DWQMP | Supervisor | Complete | - | | Jandow
ae | JIA 4 | Sedimentation | Poor settling causes high turbidity in settled water | High | Daily checking and logging of settled water turbidities Done | Complete | Immediate | Operational
Expense | DWQMP | Supervisor | Complete | - | | Jandow
ae | JIA-6 | Filtration | Inadequate
backwashing
causes poor
filter
performance | High | Remove current filter control system to allow manual operation of the system and to evercome system faults. Develop new backwash procedure with air and water combined. Done | Complete | Complete | \$15,000 | DWQMP | Water Treatment
Principal | Complete | - | | Jandow
ae | JIA 7 | Filtration | Turbidity carryover into treated water after backwashing | High | Improved backwash procedures including backwash based on need to reduce the frequency but increase the effectiveness-Done | Complete | Complete | Operational
Expense | DWQMP | Supervisor | Complete | _ | | Town | Improvement | Scheme | Hazard / | Priority | Actions | Revised | Original | Estimated | Improvement | Responsibility | Status | Comments | |-------------------------|-------------|----------------------------|---|----------|--|--|------------------|---|------------------|------------------------------|---|---| | | Action No. | Component | Hazardous
Event | | | Target Date | Target
Date | Cost | Action Reference | | | | | Jandow
ae | JIA-9 | Disinfection | Low /inadequate chlorine residuals or very high chlorine residuals | High | Develop chlorine monitoring procedures for WTP, combined bores and network | Complete | Complete | Operational
Expense | DWQMP | Supervisor | Complete | - | | Jandow | JIA 10 | Chemical | Inadequate | High | Implement improved monitoring | Complete | Complete | Operational | DWQMP | Supervisor | Complete | - | | ae | | dosing | monitoring of chemicals causes over or under dosing of chemicals | | of chemical usage- Done - levels on log sheet | | · | Expense | | , | · | | | Jandow
ae | JIA-5 | Sedimentation | Poor settling causes high turbidity in settled water | High | Install settled water turbidity monitorDone | Complete | 2016+ | \$30,000 | DWQMP | Water Treatment
Principal | Complete | - | | Jandow
ae | JIA-8 | Filtration | Turbidity carryover into treated water after backwashing | High | Install filter to waste capability and filtered water turbidity monitors- Whole new filtration system installed | Complete | Complete | \$100,000 | DWQMP | Water Treatment
Principal | Complete | Filtered water turbidity is monitored manually every day. | | Jandow
ae | JIA 11 | Chemical dosing | Inadequate
monitoring of
chemicals
causes over or
under dosing of
chemicals | High | Install online chemical monitoring , tank levels, dose pump flow rate etc | Complete | Complete | \$100,000 | DWQMP | Water Treatment
Principal | Project partially completed - Remainde r of project dependen t upon installatio n of a plant PLC in future upgrade. | Tanks and dose pumps were replaced so that batching of chemicals not required. Pumps have capability to be monitored. No in plant PLC avaliable . PLC to be installed in future plant wide upgrade. Early design work undertaken now for upgrades in 2021/22/23 | | Jandow
ae | JIA 12 | Alarms | Plant not
shutting down
or no
notification
during poor
water quality
event,
breakdown etc | High | Connect all monitors, alarms, etc into a comprehensive PLC based SCADA system | Complete | Complete | \$250,000 | DWQMP | Water Treatment
Principal | Complete | | | Jandow
ae | JIA 3 | Rapid mix and Flocculation | Coagulants not adequately mixed. This prevents the use of some coagulants including
alum. Enhanced coagulation not possible. Poorer levels of DBP | High | Install new rapid mix and floculation system- Will allow enhanced coagulation as an option when conditions are suitable. | Interim solution
in place.
Advanced
solution
scheduled for
upgrades
2021/22/23 | 2016 | \$100000.
Upgrade of
floculation
system only | DWQMP | Water Treatment
Principal | Interim solution in place. New floculator in design. Work to be included in upgrades | Minor improvements implemented and changes to coagulant in use have improved plant performance. This project is being undertaken as part of an upgrade at the front of the treatment including improved access walkways and steps | | Town | Improvement Action No. | Scheme
Component | Hazard /
Hazardous
Event | Priority | Actions | Revised
Target Date | Original
Target
Date | Estimated
Cost | Improvement
Action Reference | Responsibility | Status | Comments | |--------------|------------------------|---------------------|---|----------|---|---|----------------------------|-------------------|---------------------------------|------------------------------|---|--| | | | | precursor
removal than
expected | | | | | | | | in
2021/22/2
3 | | | Jandow
ae | JIA 2 | Raw water supply | Changes in raw
water turbidity | High | Install raw water turbidity monitor- Not done but manually checked daily | Complete.
Alternative
solution
installed | 2014 | \$30,000 | DWQMP | Water Treatment
Principal | Complete | Settled water monitor installed as this was deemed more efficient at detecting a range of issues | | Jandow
ae | JIA 14 | Disinfection | Disinfection-
Incorrect
chlorine dosing
including low or
high or no
dosing | High | Modification of valving and pipework to allow the small reservoir to be operated as a Clear Water Chlorine Contact tank in series with the Larger Storage reservoir | New item | 2023 | \$50,000 | DWQMP | Water Treatment
Principal | Almost complete | Work is being undertaken as a part of a number of upgrades across 2021/22/23 | | Jandow
ae | JIA 15 | Disinfection | Dissolved organic carbon in raw water that is unable to be removed by the conventional process forming DBPs | High | Install an air stripper in the Clear
Water Contact Tank to remove
chloroform | New item | 2023 | \$30,000 | DWQMP | Water Treatment
Principal | Early
concept
design
work | Work is being undertaken as a part of a number of upgrades across 2021/22/24. Further work will be subject to the success or otherwise of the DBP control strategy for Warra, Condamine and Jandowae | | Jandow
ae | JIA 16 | Disinfection | High levels of Dissolved organic carbon in water being chlorinated because of failure to control by other means- Formation of DBPs above guideline values | Medium | Install chloramine dosing system | New item | 2024 | \$100,000 | DWQMP | Water Treatment
Principal | Ammonia tank and some dosing equipmen t installed during earlier upgrades. Further work will be done as required. | Project will be dependant uponof the failure of other parts of the strategy. WDRC has no appetite for Chloramine dosing currently. | | Miles | MIA 13 | RO Ponds | Recommendations from Annual RO Ponds Inspection Report | | | Ongoing | | | | Water Treatment
Principal | Ongoing | | | Miles | MIA 3 | Alarms | In plant fault develops that has implications on water quality but is undetected by operator or occurs whilst plant is unattended | High | Next G alarm dialler connected to PLC to replace failed system | Complete | Complete | \$10,000 | - | - | Complete | System installed on filtration plant. Desalination plant has more comprehensive monitoring process. | | Town | Improvement Action No. | Scheme
Component | Hazard /
Hazardous
Event | Priority | Actions | Revised
Target Date | Original
Target
Date | Estimated Cost | Improvement
Action Reference | Responsibility | Status | Comments | |------------------|------------------------|---------------------|---|----------|--|------------------------|----------------------------|----------------|---------------------------------|-------------------|-------------------------------|---| | Miles | MIA 4 | Alarms | In plant fault develops that has implications on water quality but is undetected by operator or occurs whilst plant is unattended | High | Install comprehensive monitors and alarms linked to PLC etc. to provide alarms for extra parameters including quality. Included in proposed augmentation | Complete | Complete | - | - | - | Complete | Desalination plant has comprehensive monitoring installed. Turbidity monitoring installed on Filtration plant | | Miles | MIA-7 | Chemical dosing | Blue green
algae or
pesticide | High | Increase pesticide testing frequency | Complete | Complete | - | - | - | Complete | Current programmed maintained. Desalination plant allows the bore to be used as an alternative resource | | Miles | MIA 9 | Residuals | Poor quality residuals returned to plant which negatively impacts on process | High | Regular monitoring of supernatant return | Complete | Complete | - | - | - | Complete | - | | Miles | MIA 11 | Bore | Use of bore with
high fluorides in
emergency
supply basis | High | Significant chance of negative impact. Bore to be equipped with desal plant as an augmentation to allow routine usage | Complete | Complete | - | - | - | Complete | Completed October 2014 | | Miles | MIA 12 | Bore | Loss of bore when desal plant is required as only supply source due water quality issues in Gil Weir. | High | Significant chance of negative impact. Another bore to be installed to improve the reliability of the system | Defferred indefinitely | 2013 | \$1.2 million | | Utilities Manager | Defferred
indefinitel
y | Council has elected to defer this project indefinitely. | | Miles | MIA 1 | Raw water supply | Change in raw water turbidity | Medium | Daily checking and logging of turbidity to continue | Complete | Complete | - | - | - | Complete | - | | Miles | MIA 2 | Raw water supply | Change in raw
water turbidity | Medium | Install Online monitor linked to SCADA | Complete | Complete | - | - | - | Complete | New settled water turbidity monitor installed and linked to PLC. Will shut the plant down when excessive turbidity is detected. | | Miles | MIA 5 | Filtration | Turbidity carryover into treated water following backwash | Medium | Backwash procedure to be reviewed. Regular checks on end of wash and filter to waste turbidities to be performed | Complete | Complete | - | - | - | Complete | Completed. Backwash turbidity monitor installed | | Miles | MIA 6 | Disinfection | Inadequate
disinfection | Medium | Improve monitoring procedures particularly with regards to volume used | Complete | Complete | - | - | - | Complete | Completed. Pumps with flow monitoring installed | | Town | Improvement Action No. | Scheme
Component | Hazard /
Hazardous
Event | Priority | Actions | Revised
Target Date | Original
Target
Date | Estimated
Cost | Improvement
Action Reference | Responsibility | Status | Comments | |-----------------|------------------------|---------------------|--|----------|--|------------------------|----------------------------|-------------------|--|-------------------------------|-------------------------------------|--| | Miles | MIA-8 | Chemical
dosing | Blue green
algae or
pesticide | - | No current facility. Install carbon dosing system | Complete | Complete | - | - | - | Complete | Desal plant has adequate capacity to provide base load. No plans to install carbon dosing system at this time | | Miles | MIA 10 | Residuals | Poor quality residuals returned to plant which negatively impacts on process | - | No current facility. Centrifuge sludge processing plant to be installed as part of plant upgrade | Complete | Complete | - | - | - | Complete | Completed October 2014 | | Miles | MIA 13 | RO Ponds | Recommendatio
ns from Annual
RO Ponds
Inspection
Report | | | Ongoing | | | | Water Treatment
Principal | Ongoing | | | Miles | | Filters | Poor quality
filtered water
due to filter
defects | | Media replacement . Backwash trough repair, inspection of filter nozzles, concrete repair | New item | 23/24 | | DWQMP- Process
review
03/09/2021 | | Identified.
Not yet
budgetted | | | Tara | | RO Ponds | Recommendatio
ns from Annual
RO
Ponds
Inspection
Report | | | Ongoing | | | | Water Treatment
Principal | Ongoing | | | Tara | TIA 1 | <u>WTP</u> | Incorrect
chemical use | Ξ | Improve labelling and signage of the chemical tanks | = | 2020 | <u>\$5,000</u> | <u>DWQMP</u> | <u>Utilities Coordinators</u> | Complete
d | Ξ | | <u>Tara</u> | TIA 2 | WTP | No chemical
dosing due to
malfunction or
lack of
chemicals | - | When pumps are replaced considering integrating pumps into control system so that feedback is provide to control system. | - | 2021 | \$40,000 | DWQMP | <u>Utilities Coordinators</u> | Partially completed | Control system for the two plants are being integrated into the one system and surface water controls updated as the firsts stage along an improvement path. | | <u>Tara</u> | TIA 3 | WTP | Poor operation of plant or excessive return of supernatant causes high treated water turbidity | - | Install settled water turbidity monitor | - | 2022 | \$20,000 | DWQMP | <u>Utilities Coordinators</u> | - | Supernatant return suspended | | Tara | TIA-4 | <u>WTP</u> | Poor operation of plant or excessive return of supernatant causes high treated water turbidity | Ξ | Install filtered water turbidity
monitor | <u>Complete</u> | = | Ξ | DWQMP | <u>Utilities Coordinators</u> | Complete | Supernatant return suspended | | Tara | | WTP | Poor filter
performance
and short filter
runs | High | Rebuild or replace media filter | | 2023/25 | \$200,000 | DWQMP-Process
Review 31/1/2022 | | Planned
future
works | Filter is poor design and requires very careful operation to maintain quality | | Town | Improvement Action No. | Scheme
Component | Hazard /
Hazardous
Event | Priority | Actions | Revised
Target Date | Original
Target
Date | Estimated
Cost | Improvement
Action Reference | Responsibility | Status | Comments | |------------------------|------------------------|------------------------------|---|----------|--|--|----------------------------|-----------------------------------|---------------------------------|------------------------------|----------|--| | | | | contribute/caus
e poor filtered
water quality | | | | | | | | | | | Wandoa
n | WNIA 1 | Disinfection | Incorrect disinfection due to poor chemical control. | High | Improve monitoring procedures on existing system to ensure that correct amount of hypo is dosed. | Complete | Complete | - | - | - | Complete | System of chemical tank daily monitoring implemented. | | Wandoa
n | WNIA 2 | Disinfection | Incorrect disinfection due to poor chemical control. | High | Dose pump monitoring system installed. | Complete | Complete | - | - | - | Complete | This was implemented as part of the 2014 upgrade. This issue has been significantly resolved. Disinfection monitoring is performed by online analyser and direct pump status readout on SCADA. | | Wandoa
n | WNIA 4 | Water
Treatment
Plant. | Commissioning and Operation. | High | Perform a treatment plant evaluation and operational risk assessment after commissioning and operation of new treatment plant. | Complete | Complete | - | - | - | Complete | Treatment plant evaluation undertaken. | | Wandoa
n | WNIA 3 | Aerators | Incorrect flow
split causes
plant
overloading. | Medium | Flow splitting arrangement to be investigated and improved. | Complete | Complete | - | - | - | Complete | Flow splitting arrangements totally changed with 2014 upgrade. Each train now has its own supply pump. | | Warra | WIA 26 | Training | - consuming | High | Training of operators to improve knowledge about their role in the operation of automated plants and the maintenance of water quality. | Ongoing | 2015 | | | Supervisor | Ongoing | (Refer to WIA 22) | | Warra | WIA 28 | Disinfection | Regular
detections and
exceedance of
DBPs | High | Chloramine dosing is proposed as a trail solution. Chloramine system to be installed | System installed but not currently in use. | Jun-18 | | | Water Treatment
Principal | On hold | System completion only requires minor works and endorsement by Council. No decision will be made until other components of the DBP strategy are in place. | | Warra | WIA 17 | High service pumps | Pumps operating excessively without detection by operators | High | Existing SCADA based hours run meter be modified to record minutes run per day instead of hours run per day. | 2019 | Jan-16 | \$3,000 | - | Supervisor | Complete | Improvement to UF Plant | | Warra | - | Raw water supply | Algae growth in offstream storage linked to the formation of Bromoforms in treated water. | High | Monthly sampling and algae counting, to drive early intervention dosing | new item | 2021 | Ongoing
operational
expense | - | Supervisor | Ongoing | Regular sampling to monitor algae counts has occurred | | Town | Improvement
Action No. | Scheme
Component | Hazard /
Hazardous
Event | Priority | Actions | Revised
Target Date | Original
Target
Date | Estimated
Cost | Improvement
Action Reference | Responsibility | Status | Comments | |-------|---------------------------|---------------------|---|----------|--|------------------------|----------------------------|-------------------|---------------------------------|------------------------------|---------------------------------|---| | | | | Algae growth in offstream storage linked to the formation of Bromoforms in treated water. | Medium | Regular dosing of chellated copper into the storage to reduce/eliminate algae growth. Dosing rig to be installed at off stream storage pumpstation | New item | by 2021 | \$10,000 | | Water Treatment
Principal | Interim
solution in
place | Interim dose rig to be installed by the end of 2020. Permanent solution by the end of 2021. Manual dosing continuing but expected to be only required occassionally and in conjunction with aerators /circulators | | - | - | - | Algae growth in offstream storage linked to the formation of Bromoforms and otherDBPs in treated water. | High | Install dam aeration and circulation to control algae and oxidise manganese | New item | 2022 | \$50,000 | - | Water Treatment
Principal | Complete | 2 aerator/circulators installed in
January 2022. Will take some
time to be fully effective | | Warra | - | Raw water
supply | Manganese in dam requires permanaganate dosing both of which controbute to dirty water events. | High | - | | | | - | | | | # 4 Verification Monitoring - Water Quality Information and Summary The section shows the water quality characteristics sampled under WDRC's Verification Monitoring Program during 2022 - 2023. The information is classified into: - Water quality parameter. - Schemes sampling for the specific parameter. - Number of samples required under WDRC's Verification Monitoring Program - Number of samples collected and Tested by External and Internal Labs # 4.1 Disinfection By-Products Table 4-1 - Disinfection By-Products | Scheme | Parameter | ADWG Water
Quality Criteria | Average Water
Quality Value | Max Water
Quality Value | Min Water
Quality Value | No. of
Samples
Required to be
Sampled | No. of Samples Sampled Internally & Externally | |--------|---------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | | | (mg/L unless
otherwise
specified) | | | | (as per the DWQMP) | (As per the DWQMP) | | Bell | Chloroform | | 49.64 | 160.00 | 1.00 | 1 Reticulation | 14 | | | Bromide-chloromethane | | 53.71 | 110.00 | 1.00 | Sample per
Month | | | | Dibromo-chloromethane | | 47.14 | 90.00 | 3.00 | | | | | Bromoform | | 19.14 | 44.00 | 2.00 | | | | | Total Trihalomethanes | 250 | 169.79 | 370.00 | 15.00 | | | | | Monochloro-acetic Acid | 150 | 6.21 | 10.00 | 5.00 | | | | | Monobromo-acetic Acid | | 5.36 | 10.00 | 5.00 | | | | | Dichloro-acetic Acid | 100 | 25.43 | 59.00 | 5.00 | | | | | Trichloro-acetic Acid | 100 | 31.50 | 67.00 | 5.00 | | | | | Bromochloro-acetic Acid | | 19.71 | 40.00 | 5.00 | | | | | Bromodichloro-acetic Acid | | 27.71 | 5.00 | 50.00 | | | | | Dibrom-acetic Acid | | 11.86 | 20.00 | 5.00 | | | | | Chlorodibromo-acetic Acid | | 14.86 | 30.00 | 5.00 | | | |------------|---------------------------|-----|--------|--------|--------|---------------------|----| | | Dalapon 2,2-DPA | 500 | 10.00 | 10.00 | 10.00 | | | | | Chlorite | 0.8 | 0.01 | 0.01 | 0.01 | | | | | Chlorate | 0.8 | 0.27 | 0.59 | 0.03 | | | | Chinchilla | Chloroform | | 86.05 | 160.00 | 48.00 | 1 Reticulation | 19 | | | Bromide-chloromethane | | 68.53 | 110.00 | 40.00 | Sample per
Month | | | | Dibromo-chloromethane | | 56.32 | 100.00 | 18.00 | | | | | Bromoform | | 12.53 | 25.00 | 1.00 | | | | | Total Trihalomethanes | 250 | 222.63 | 330.00 | 120.00 | | | | | Monochloro-acetic Acid | 150 | 5.58 | 10.00 | 5.00 | | | | |
Monobromo-acetic Acid | | 5.00 | 5.00 | 5.00 | | | | | Dichloro-acetic Acid | 100 | 29.53 | 87.00 | 5.00 | | | | | Trichloro-acetic Acid | 100 | 30.16 | 71.00 | 5.00 | | | | | Bromochloro-acetic Acid | | 16.95 | 37.00 | 5.00 | | | | | Bromodichloro-acetic Acid | | 29.16 | 5.00 | 45.00 | | | | | Dibrom-acetic Acid | | 10.63 | 26.00 | 5.00 | | | | | Chlorodibromo-acetic Acid | | 14.63 | 26.00 | 5.00 | | | | | Dalapon 2,2-DPA | 500 | 10.00 | 10.00 | 10.00 | | | | | Chlorite | 0.8 | 0.19 | 0.37 | 0.12 | | | | | Chlorate | 0.8 | 0.20 | 0.37 | 0.12 | | | | Condamine | Chloroform | | 26.17 | 45.00 | 3.00 | 1 Reticulation | 12 | |-----------|---------------------------|-----|-------|--------|-------|---------------------|----| | | Bromide-chloromethane | | 18.00 | 30.00 | 10.00 | Sample per
Month | | | | Dibromo-chloromethane | | 20.08 | 53.00 | 3.00 | | | | | Bromoform | | 10.58 | 35.00 | 1.00 | | | | | Total Trihalomethanes | 250 | 74.92 | 130.00 | 49.00 | | | | | Monochloro-acetic Acid | 150 | 7.33 | 13.00 | 5.00 | | | | | Monobromo-acetic Acid | | 5.00 | 5.00 | 5.00 | | | | | Dichloro-acetic Acid | 100 | 34.67 | 80.00 | 7.00 | | | | | Trichloro-acetic Acid | 100 | 42.83 | 97.00 | 5.00 | | | | | Bromochloro-acetic Acid | | 19.25 | 31.00 | 6.00 | | | | | Bromodichloro-acetic Acid | | 21.67 | 9.00 | 37.00 | | | | | Dibrom-acetic Acid | | 12.17 | 22.00 | 5.00 | | | | | Chlorodibromo-acetic Acid | | 10.42 | 16.00 | 5.00 | | | | | Dalapon 2,2-DPA | 500 | 10.00 | 10.00 | 10.00 | | | | | Chlorite | 0.8 | 0.01 | 0.02 | 0.01 | | | | | Chlorate | 0.8 | 0.28 | 0.41 | 0.14 | | | | Dalby | Chloroform | | 2.67 | 6.00 | 1.00 | 1 Reticulation | 12 | | | Bromide-chloromethane | | 11.92 | 24.00 | 1.00 | Sample per
Month | | | | Dibromo-chloromethane | | 36.92 | 74.00 | 2.00 | | | | | Bromoform | | 44.17 | 77.00 | 7.00 | | | |----------|---------------------------|-----|--------|--------|-------|---------------------|----| | | Total Trihalomethanes | 250 | 95.58 | 180.00 | 11.00 | | | | | Monochloro-acetic Acid | 150 | 5.42 | 10.00 | 5.00 | | | | | Monobromo-acetic Acid | | 5.42 | 10.00 | 5.00 | | | | | Dichloro-acetic Acid | 100 | 5.42 | 10.00 | 5.00 | | | | | Trichloro-acetic Acid | 100 | 5.42 | 10.00 | 5.00 | | | | | Bromochloro-acetic Acid | | 8.00 | 13.00 | 5.00 | | | | | Bromodichloro-acetic Acid | | 6.58 | 5.00 | 12.00 | | | | | Dibrom-acetic Acid | | 15.00 | 28.00 | 5.00 | | | | | Chlorodibromo-acetic Acid | | 10.58 | 18.00 | 5.00 | | | | | Dalapon 2,2-DPA | 500 | 10.00 | 10.00 | 10.00 | | | | | Chlorite | 0.8 | 0.01 | 0.01 | 0.01 | | | | | Chlorate | 0.8 | 0.18 | 0.33 | 0.05 | | | | Jandowae | Chloroform | | 184.50 | 290.00 | 1.00 | 1 Reticulation | 14 | | | Bromide-chloromethane | | 28.88 | 41.00 | 18.00 | Sample per
Month | | | | Dibromo-chloromethane | | 3.88 | 9.00 | 1.00 | | | | | Bromoform | | 1.00 | 1.00 | 1.00 | | | | | Total Trihalomethanes | 250 | 216.38 | 310.00 | 19.00 | | | | | Monochloro-acetic Acid | 150 | 6.88 | 11.00 | 5.00 | | | | | Monobromo-acetic Acid | | 5.31 | 10.00 | 5.00 | | | |-------|---------------------------|-----|--------|--------|-------|---------------------|----| | | Dichloro-acetic Acid | 100 | 55.56 | 100.00 | 8.00 | | | | | Trichloro-acetic Acid | 100 | 82.56 | 150.00 | 32.00 | | | | | Bromochloro-acetic Acid | | 8.44 | 13.00 | 5.00 | | | | | Bromodichloro-acetic Acid | | 10.50 | 8.00 | 16.00 | | | | | Dibrom-acetic Acid | | 5.31 | 10.00 | 5.00 | | | | | Chlorodibromo-acetic Acid | | 5.31 | 10.00 | 5.00 | | | | | Dalapon 2,2-DPA | 500 | 10.00 | 10.00 | 10.00 | | | | | Chlorite | 0.8 | 0.01 | 0.01 | 0.01 | | | | | Chlorate | 0.8 | 0.14 | 0.26 | 0.08 | | | | Miles | Chloroform | | 74.95 | 150.00 | 1.00 | 1 Reticulation | 20 | | | Bromide-chloromethane | | 38.85 | 56.00 | 1.00 | Sample per
Month | | | | Dibromo-chloromethane | | 23.85 | 35.00 | 1.00 | | | | | Bromoform | | 4.60 | 8.00 | 1.00 | | | | | Total Trihalomethanes | 250 | 142.40 | 230.00 | 4.00 | | | | | Monochloro-acetic Acid | 150 | 5.35 | 7.00 | 5.00 | | | | | Monobromo-acetic Acid | | 5.00 | 5.00 | 5.00 | | | | | Dichloro-acetic Acid | 100 | 26.35 | 56.00 | 5.00 | | | | | Trichloro-acetic Acid | 100 | 29.15 | 65.00 | 5.00 | | | |------|---------------------------|-----|--------|--------|-------|---------------------|----| | | Bromochloro-acetic Acid | | 11.55 | 17.00 | 5.00 | - | | | | Bromodichloro-acetic Acid | | 12.55 | 5.00 | 22.00 | | | | | Dibrom-acetic Acid | | 5.80 | 10.00 | 5.00 | | | | | Chlorodibromo-acetic Acid | | 5.25 | 7.00 | 5.00 | | | | | Dalapon 2,2-DPA | 500 | 10.00 | 10.00 | 10.00 | - | | | | Chlorite | 0.8 | 0.01 | 0.01 | 0.01 | | | | | Chlorate | 0.8 | 0.35 | 0.86 | 0.01 | | | | Tara | Chloroform | | 76.60 | 200.00 | 1.00 | 1 Reticulation | 15 | | | Bromide-chloromethane | | 30.73 | 69.00 | 1.00 | Sample per
Month | | | | Dibromo-chloromethane | | 15.60 | 50.00 | 2.00 | | | | | Bromoform | | 6.53 | 31.00 | 1.00 | | | | | Total Trihalomethanes | 250 | 128.87 | 300.00 | 4.00 | | | | | Monochloro-acetic Acid | 150 | 5.40 | 7.00 | 5.00 | | | | | Monobromo-acetic Acid | | 5.00 | 5.00 | 5.00 | | | | | Dichloro-acetic Acid | 100 | 22.87 | 53.00 | 5.00 | | | | | Trichloro-acetic Acid | 100 | 38.93 | 110.00 | 5.00 | | | | | Bromochloro-acetic Acid | | 9.33 | 19.00 | 5.00 | | | | | Bromodichloro-acetic Acid | | 13.13 | 5.00 | 33.00 | | | |---------|---------------------------|-----|-------|--------|-------|---------------------|----| | | Dibrom-acetic Acid | | 6.00 | 13.00 | 5.00 | | | | | Chlorodibromo-acetic Acid | | 5.07 | 6.00 | 5.00 | | | | | Dalapon 2,2-DPA | 500 | 10.00 | 10.00 | 10.00 | | | | | Chlorite | 0.8 | 0.01 | 0.01 | 0.01 | | | | | Chlorate | 0.8 | 0.76 | 1.10 | 0.37 | | | | Wandoan | Chloroform | | 7.05 | 46.00 | 1.00 | 1 Reticulation | 19 | | | Bromide-chloromethane | | 5.63 | 33.00 | 2.00 | Sample per
Month | | | | Dibromo-chloromethane | | 4.47 | 26.00 | 1.00 | | | | | Bromoform | | 1.53 | 6.00 | 1.00 | | | | | Total Trihalomethanes | 250 | 18.26 | 110.00 | 5.00 | | | | | Monochloro-acetic Acid | 150 | 6.37 | 10.00 | 5.00 | | | | | Monobromo-acetic Acid | | 5.00 | 5.00 | 5.00 | | | | | Dichloro-acetic Acid | 100 | 7.53 | 16.00 | 5.00 | | | | | Trichloro-acetic Acid | 100 | 6.58 | 20.00 | 5.00 | | | | | Bromochloro-acetic Acid | | 5.42 | 9.00 | 5.00 | | | | | Bromodichloro-acetic Acid | | 5.63 | 5.00 | 11.00 | | | | | Dibrom-acetic Acid | | 5.00 | 5.00 | 5.00 | | | | | Chlorodibromo-acetic Acid | | 5.00 | 5.00 | 5.00 | | | | | Dalapon 2,2-DPA | 500 | 10.00 | 10.00 | 10.00 | | | |-------|---------------------------|-----|--------|--------|--------|---------------------|----| | | Chlorite | 0.8 | 0.01 | 0.01 | 0.01 | | | | | Chlorate | 0.8 | 0.62 | 1.81 | 0.08 | | | | Warra | Chloroform | | 24.00 | 37.00 | 9.00 | 1 Reticulation | 23 | | | Bromide-chloromethane | | 69.78 | 100.00 | 36.00 | Sample per
Month | | | | Dibromo-chloromethane | | 121.74 | 160.00 | 61.00 | | | | | Bromoform | | 85.65 | 120.00 | 28.00 | | | | | Total Trihalomethanes | 250 | 302.17 | 410.00 | 170.00 | | | | | Monochloro-acetic Acid | 150 | 5.65 | 10.00 | 5.00 | | | | | Monobromo-acetic Acid | | 5.52 | 10.00 | 5.00 | | | | | Dichloro-acetic Acid | 100 | 12.30 | 32.00 | 5.00 | | | | | Trichloro-acetic Acid | 100 | 6.35 | 15.00 | 5.00 | | | | | Bromochloro-acetic Acid | | 20.30 | 31.00 | 9.00 | | | | | Bromodichloro-acetic Acid | | 10.70 | 6.00 | 22.00 | | | | | Dibrom-acetic Acid | | 28.87 | 40.00 | 14.00 | | | | | Chlorodibromo-acetic Acid | | 16.22 | 26.00 | 10.00 | | | | | Dalapon 2,2-DPA | 500 | 10.00 | 10.00 | 10.00 | | | | | Chlorite | 0.8 | 0.01 | 0.01 | 0.01 | | | | | Chlorate | 0.8 | 0.47 | 0.86 | 0.03 | | | # 4.2 Fluoride Table 4-2 - Fluoride | Scheme | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Sampled (as per the DWQMP) | No. of Samples
Collected and
Tested Externally
& Internally | *Incident No - if applicable - will be included in Comments section further detail in Section 6 Incidents reported to the regulator | |------------|----------------|---|--------------------------------|----------------------------|-----------------------------|--|--|---| | Chinchilla | Treated Spadns | 1.5 | 0.65 | 0.77 | 0.54 | 3 Water Treatment 71 Plant per Month 72 | 71 | | | Dalby | | | 0.68 | 0.85 | 0.04 | | 72 | | | Miles | | 0.09 | 0.12 | 0.07 | 3 Reticulation per
Month | Miles's fluoride system is not operational | | | #### 4.3 Pesticides Table 4-3 - Pesticides | Scheme | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Sampled Internally & Externally | |--------|-------------------------|--|--------------------------------|----------------------------|----------------------------|--|---| | BELL | Ametryn | Heath 70ug/L | 0.08 | 0.10 | 0.06 | 1 Surface Water per 12 Month 1 Reticulation per 3 Month | Surface water source not in use for majority of this period | | | Atrazine | Heath 20ug/L | 0.16 | 0.20 | 0.11 | | | | | Bromacil | Health 400ug/L | 0.16 | 0.20 | 0.13 | | | | | Desethyl Atrazine | | 0.08 | 0.10 | 0.06 | | | | | Desisopropyl Atrazine | | 0.15 | 0.20 | 0.11 | | | | | Diuron | Health 20ug/L |
0.02 | 0.02 | 0.02 | | | | | Fluometuron | Heath 70ug/L | 0.16 | 0.20 | 0.13 | | | | | Hexazione
Hexazinone | Health 400ug/L | 0.09 | 0.10 | 0.08 | | | | | Imidacloprid | | 0.02 | 0.02 | 0.02 | | | | | Dimethoate | Heath 70ug/L | | | | | | | | Metolachlor-OXA | Health 400ug/L | 0.08 | 0.10 | 0.06 | | | | | Tebuconazole | | | | | | | | | Prometryn | | 0.08 | 0.10 | 0.06 | | | | Scheme | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples
Sampled Internally &
Externally | |------------|--------------------------------------|--|--------------------------------|----------------------------|----------------------------|--|--| | | Simazine | Heath 20ug/L | 0.16 | 0.20 | 0.13 | | | | | Terbuthylazine | Heath 10µg/L | 0.10 | 0.10 | 0.10 | | | | | Triethyl Phosphate | | 0.10 | 0.10 | 0.10 | | | | | Tris(Chloropropyl) Phosphate Isomers | | 0.20 | 0.20 | 0.20 | | | | | N-
Butylbenzenesulfonamide | | 0.08 | 0.10 | 0.08 | | | | CHINCHILLA | Ametryn | Heath 70ug/L | 0.02 | 0.02 | 0.02 | 1 Surface Water per
12 Month
1 Reticulation per 3
Month | 8 | | | Atrazine | Heath 20ug/L | 0.26 | 0.37 | 0.14 | | | | | Bromacil | Health 400ug/L | 0.04 | 0.04 | 0.04 | | | | | Desethyl Atrazine | | 0.03 | 0.04 | 0.02 | | | | | Desisopropyl Atrazine | | 0.02 | 0.02 | 0.02 | | | | | Diuron | Health 20ug/L | 0.02 | 0.02 | 0.02 | | | | | Fluometuron | Heath 70ug/L | 0.05 | 0.06 | 0.04 | | | | | Hexazione
Hexazinone | Health 400ug/L | 0.03 | 0.04 | 0.02 | | | | | Imidacloprid | | 0.02 | 0.02 | 0.02 | | | | | Dimethoate | Heath 70ug/L | | | | | | | Scheme | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples
Sampled Internally &
Externally | |-----------|--------------------------------------|--|--------------------------------|----------------------------|----------------------------|--|--| | | Metolachlor-OXA | Health 400ug/L | 0.91 | 1.52 | 0.31 | | | | | Tebuconazole | | | | | | | | | Prometryn | | 0.01 | 0.01 | 0.01 | | | | | Simazine | Heath 20ug/L | 0.03 | 0.04 | 0.03 | | | | | Terbuthylazine | Heath 10µg/L | 0.11 | 0.15 | 0.07 | | | | | Triethyl Phosphate | | 0.04 | 0.06 | 0.03 | | | | | Tris(Chloropropyl) Phosphate Isomers | | 0.19 | 0.20 | 0.19 | | | | | N-
Butylbenzenesulfonamide | | 0.08 | 0.10 | 0.05 | | | | CONDAMINE | Ametryn | Heath 70ug/L | 0.02 | 0.02 | 0.02 | 1 Surface Water per 12 Month 1 Reticulation per 3 Month | 6 | | | Atrazine | Heath 20ug/L | 0.25 | 0.33 | 0.18 | | | | | Bromacil | Health 400ug/L | 0.04 | 0.04 | 0.04 | | | | | Desethyl Atrazine | | 0.03 | 0.04 | 0.03 | | | | | Desisopropyl Atrazine | | 0.02 | 0.02 | 0.02 | | | | | Diuron | Health 20ug/L | 0.02 | 0.02 | 0.02 | | | | | Fluometuron | Heath 70ug/L | 0.02 | 0.02 | 0.02 | | | | Scheme | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples
Sampled Internally &
Externally | |--------|--------------------------------------|--|--------------------------------|----------------------------|----------------------------|--|--| | | Hexazione
Hexazinone | Health 400ug/L | 0.01 | 0.01 | 0.01 | | | | | Imidacloprid | | 0.02 | 0.02 | 0.02 | | | | | Dimethoate | Heath 70ug/L | | | | | | | | Metolachlor-OXA | Health 400ug/L | 0.78 | 1.24 | 0.31 | | | | | Tebuconazole | | | | | | | | | Prometryn | | 0.01 | 0.02 | 0.01 | | | | | Simazine | Heath 20ug/L | 0.02 | 0.02 | 0.02 | | | | | Terbuthylazine | Heath 10µg/L | 0.14 | 0.21 | 0.08 | | | | | Triethyl Phosphate | | 49.71 | 59.05 | 40.37 | | | | | Tris(Chloropropyl) Phosphate Isomers | | 0.20 | 0.20 | 0.20 | | | | | N-
Butylbenzenesulfonamide | | 0.08 | 0.10 | 0.05 | | | | DALBY | Ametryn | Heath 70ug/L | 0.02 | 0.02 | 0.02 | 1 Surface Water per
12 Month | 6 | | | Atrazine | Heath 20ug/L | 0.27 | 0.35 | 0.20 | | | | | Bromacil | Health 400ug/L | 0.05 | 0.05 | 0.05 | | | | | Desethyl Atrazine | | 0.01 | 0.01 | 0.01 | | | | Scheme | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples
Sampled Internally &
Externally | |----------|--------------------------------------|--|--------------------------------|----------------------------|----------------------------|--|--| | | Desisopropyl Atrazine | | 0.03 | 0.04 | 0.02 | 1 Reticulation per 3 | | | | Diuron | Health 20ug/L | 0.02 | 0.03 | 0.02 | Month | | | | Fluometuron | Heath 70ug/L | 0.02 | 0.02 | 0.02 | | | | | Hexazione
Hexazinone | Health 400ug/L | 0.05 | 0.05 | 0.05 | | | | | Imidacloprid | | 0.05 | 0.05 | 0.05 | | | | | Dimethoate | Heath 70ug/L | 0.02 | 0.02 | 0.02 | | | | | Metolachlor-OXA | Health 400ug/L | 0.81 | 1.80 | 0.28 | | | | | Tebuconazole | | 0.05 | 0.05 | 0.05 | | | | | Prometryn | | 0.01 | 0.01 | 0.01 | | | | | Simazine | Heath 20ug/L | 0.05 | 0.05 | 0.05 | | | | | Terbuthylazine | Heath 10µg/L | 0.03 | 0.04 | 0.02 | | | | | Triethyl Phosphate | | 0.05 | 0.05 | 0.05 | | | | | Tris(Chloropropyl) Phosphate Isomers | | 0.17 | 0.22 | 0.13 | | | | | N-
Butylbenzenesulfonamide | | 0.01 | 0.01 | 0.01 | | | | JANDOWAE | Ametryn | Heath 70ug/L | 0.05 | 0.10 | 0.02 | | 4 | | Scheme | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples
Sampled Internally &
Externally | |--------|-------------------------|--|--------------------------------|----------------------------|----------------------------|--|--| | | Atrazine | Heath 20ug/L | 0.81 | 2.20 | 0.11 | 1 Surface Water per | | | | Bromacil | Health 400ug/L | 0.07 | 0.10 | 0.05 | 12 Month | | | | Desethyl Atrazine | | 0.04 | 0.10 | 0.01 | 1 Reticulation per 3 Month | | | | Desisopropyl Atrazine | | 0.15 | 0.17 | 0.10 | _ Month | | | | Diuron | Health 20ug/L | 0.12 | 0.14 | 0.10 | | | | | Fluometuron | Heath 70ug/L | 0.02 | 0.02 | 0.02 | | | | | Hexazione
Hexazinone | Health 400ug/L | 0.07 | 0.10 | 0.05 | | | | | Imidacloprid | | 0.07 | 0.10 | 0.05 | | | | | Dimethoate | Heath 70ug/L | 0.02 | 0.02 | 0.02 | | | | | Metolachlor-OXA | Health 400ug/L | 6.83 | 8.30 | 4.80 | | | | | Tebuconazole | | 0.07 | 0.10 | 0.05 | | | | | Prometryn | | 0.04 | 0.10 | 0.01 | | | | | Simazine | Heath 20ug/L | 0.07 | 0.10 | 0.05 | | | | | Terbuthylazine | Heath 10µg/L | 0.05 | 0.10 | 0.02 | | | | | Triethyl Phosphate | | 0.07 | 0.10 | 0.05 | | | | Scheme | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples
Sampled Internally &
Externally | |--------|--------------------------------------|--|--------------------------------|----------------------------|----------------------------|--|--| | | Tris(Chloropropyl) Phosphate Isomers | | 0.04 | 0.10 | 0.01 | | | | | N-
Butylbenzenesulfonamide | | 0.04 | 0.10 | 0.01 | | | | MILES | Ametryn | Heath 70ug/L | 0.07 | 0.10 | 0.02 | 1 Surface Water per | | | | Atrazine | Heath 20ug/L | 0.07 | 0.10 | 0.02 | 12 Month | | | | Bromacil | Health 400ug/L | 0.08 | 0.10 | 0.05 | 1 Reticulation per 3 Month | | | | Desethyl Atrazine | | 0.07 | 0.10 | 0.01 | Month | | | | | | 0.07 | 0.10 | 0.01 | | | | | Diuron | Health 20ug/L | 0.07 | 0.10 | 0.01 | | | | | Fluometuron | Heath 70ug/L | 0.02 | 0.02 | 0.02 | | | | | Hexazione
Hexazinone | Health 400ug/L | 0.07 | 0.10 | 0.02 | | | | | Imidacloprid | | 0.07 | 0.10 | 0.01 | | | | | Dimethoate | Heath 70ug/L | 0.02 | 0.02 | 0.02 | | | | | Metolachlor-OXA | Health 400ug/L | 0.10 | 0.11 | 0.10 | | | | | Tebuconazole | | 0.08 | 0.10 | 0.05 | | | | | Prometryn | | 0.07 | 0.10 | 0.01 | | | | Scheme | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples
Sampled Internally &
Externally | |--------|--------------------------------------
--|--------------------------------|----------------------------|----------------------------|--|--| | | Simazine | Heath 20ug/L | 0.07 | 0.10 | 0.02 | | | | | Terbuthylazine | Heath 10µg/L | 0.09 | 0.10 | 0.06 | | | | | Triethyl Phosphate | | 0.07 | 0.10 | 0.02 | | | | | Tris(Chloropropyl) Phosphate Isomers | | 0.15 | 0.25 | 0.10 | | | | | N-
Butylbenzenesulfonamide | | 0.07 | 0.10 | 0.02 | | | | WARRA | Ametryn | Heath 70ug/L | 0.06 | 0.10 | 0.02 | 1 Surface Water per | 4 | | | Atrazine | Heath 20ug/L | 0.16 | 0.21 | 0.10 | 12 Month | | | | Bromacil | Health 400ug/L | 0.08 | 0.10 | 0.05 | 1 Reticulation per 3 Month | | | | Desethyl Atrazine | | 0.06 | 0.10 | 0.01 | | | | | Desisopropyl Atrazine | | 0.09 | 0.10 | 0.07 | | | | | Diuron | Health 20ug/L | 0.07 | 0.10 | 0.03 | | | | | Fluometuron | Heath 70ug/L | 0.02 | 0.02 | 0.02 | | | | | Hexazione
Hexazinone | Health 400ug/L | 0.06 | 0.10 | 0.02 | | | | | Imidacloprid | | 0.06 | 0.10 | 0.01 | | | | | Dimethoate | Heath 70ug/L | 0.03 | 0.04 | 0.02 | | | | Scheme | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples
Sampled Internally &
Externally | |--------|--------------------------------------|--|--------------------------------|----------------------------|----------------------------|--|--| | | Metolachlor-OXA | Health 400ug/L | 0.13 | 0.16 | 0.10 | | | | | Tebuconazole | | 0.08 | 0.10 | 0.05 | | | | | Prometryn | | 0.06 | 0.10 | 0.01 | | | | | Simazine | Heath 20ug/L | 0.08 | 0.10 | 0.05 | | | | | Terbuthylazine | Heath 10µg/L | 0.07 | 0.10 | 0.04 | | | | | Triethyl Phosphate | | 0.08 | 0.10 | 0.05 | | | | | Tris(Chloropropyl) Phosphate Isomers | | 0.09 | 0.10 | 0.08 | | | | | N-
Butylbenzenesulfonamide | | 0.06 | 0.10 | 0.01 | | | # 4.4 Microbiology Table 4-4 - Microbiology | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality
Value | Max Water Quality Value | Min Water Quality Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected
and Tested Internally &
Externally | | | | | |-----------|--|--------------------------------|-------------------------|-------------------------|--|---|--|--|--|--| | | | | BELL | | | | | | | | | E.coli | 0 | 0 | 0 | 0 | 1 Water Treatment Plant | Internal Results - 338 | | | | | | Coliforms | 0 | 0 | 0 | 0.00 | per Month | External Results -21 | | | | | | | | | | | 1 Reticulation per Month | | | | | | | | CHINCHILLA | | | | | | | | | | | E.coli | 0 | 0 | 0 | 0 | 1 Water Treatment Plant | Internal Results - 303 | | | | | | Coliforms | 0 | 0 | 0 | 0 | per Month | External Results -77 | | | | | | | | | | | 6 Reticulation per Month | | | | | | | | | | CONDAMINE | | | | | | | | | E.coli | 0 | 0 | 0 | 0 | 1 Water Treatment Plant | Internal Results - 115 | | | | | | Coliforms | 0 | 0 | 0 | 0 | per Month | External Results -27 | | | | | | | | | | | 2 Reticulation per Month | | | | | | | | DALBY | | | | | | | | | | | E.coli | 0 | 0 | 0 | 0 | 1 Water Treatment Plant | Internal Results - 91 | | | | | | Coliforms | 0 | 0 | 0 | 0 | per Month | External Results -86 | | | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality
Value | Max Water Quality Value | Min Water Quality Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested Internally & Externally | |-----------|--|--------------------------------|-------------------------|-------------------------|--|---| | | | | | | 7 Reticulation per Month | | | | | | JANDOWAE | | | | | E.coli | 0 | 0 | 0 | 0 | 1 Water Treatment Plant | Internal Results - 299 | | Coliforms | 0 | 0 | 0 | 0.00 | per Month | External Results -60 | | | | | | | 5 Reticulation per Month | | | | | | MILES | | | | | E.coli | 0 | 0 | 0 | 0 | 1 Water Treatment Plant | Internal Results - 51 | | Coliforms | 0 | 0 | 0 | 0 | per Month | External Results -68 | | | | | | | 5 Reticulation per Month | | | | | | TARA | | | | | E.coli | 0 | 0 | 0 | 0 | 1 Water Treatment Plant | Internal Results - 122 | | Coliforms | 0 | 0 | 0 | 0 | per Month | External Results -70 | | | | | | | 5 Reticulation per Month | | | | | | WANDOAN | | | | | E.coli | 0 | 0 | 0 | 0 | 1 Water Treatment Plant | Internal Results - 69 | | | | | | | per Month | External Results -31 | | | | | | | 2 Reticulation per Month | | | Parameter | Water Quality Criteria
(mg/L unless otherwise
specified)
(ADWG guideline value) | Average Water Quality
Value | Max Water Quality Value | Min Water Quality Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected
and Tested Internally &
Externally | |-----------|--|--------------------------------|-------------------------|-------------------------|--|---| | Coliforms | 0 | 0 | 0 | 0 | | | | | | | WARRA | | | | | E.coli | 0 | 0 | 0 | 0 | 1 Water Treatment Plant | Internal Results - 272 | | Coliforms | 0 | 0 | 0 | 0 | per Month 1 Reticulation per Month | External Results -16 | ## 4.5 Standard Chemical Analysis Table 4-5 - Standard Chemical Analysis | Parameter | Water Quality Criteria
(mg/L unless
otherwise specified)
(ADWG guideline
value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and
Tested by an Internal & External
Laboratory | |---------------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | | | | BELL | | | | | Alkalinity | | 356.67 | 610.00 | 140.00 | 1 R/ 2 Month | 12 | | Aluminium (AI) | Aesthetic 0.2 | 0.03 | 0.04 | 0.03 | | Free Chlorine 541 | | Bicarbonate (HCO ³) | | 426.00 | 726.00 | 170.00 | | pH 541
Turbidity 539 | | Boron (B) | Heath 4 | 0.06 | 0.08 | 0.04 | | , | | Calcium (Ca) | | 43.83 | 53.00 | 33.00 | | | | Carbonate (CO ³) | | 3.97 | 7.40 | 1.40 | | | | Chloride (CI) | Aesthetic 250 | 251.67 | 370.00 | 160.00 | _ | | | Conductivity | | 1478.33 | 2200.00 | 830.00 | | | | Copper (Cu) | Aesthetic 1 | | | | | | | | Heath 2 | 0.00 | 0.00 | 0.00 | | | | Figure of Merit Ratio | | 1.07 | 1.80 | 0.30 | | | | Fluoride (F) | Heath 1.5 | 0.21 | 0.25 | 0.17 | | | | Hydrogen (H) | | 0.00 | 0.00 | 0.00 | | | | Parameter | Water Quality Criteria
(mg/L unless
otherwise specified)
(ADWG guideline
value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and
Tested by an Internal & External
Laboratory | |-----------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | | | | BELL | | _ | | | Hydroxide (OH) | | 0.00 | 0.00 | 0.00 | | | | Iron (Fe) | Aesthetic 0.3 | 0.01 | 0.01 | 0.01 | 7 | | | Magnesium (mg) | | 36.83 | 49.00 | 32.00 | | | | Manganese (Mn) | Aesthetic 01 | | | | | | | | Heath 0.5 | 0.01 | 0.02 | 0.00 | | | | Mole Ratio | | 2.12 | 2.30 | 1.90 | | | | Nitrate (NO ³) | Aesthetic 50 | 0.76 | 1.20 | 0.19 | | | | рН | Aesthetic 6.5 - 8.5pH | 8.21 | 8.27 | 8.15 | | | | pH Sat | | 7.42 | 7.70 | 7.10 | 7 | | | Potassium (K) | | 7.00 | 9.50 | 4.90 | 7 | | | Residual Alkalinity | Aesthetic 150 | 3.00 | 7.50 | 0.00 | 7 | | | Saturation Index | | 0.82 | 1.10 | 0.50 | | | | Silica | Aesthetic 80 | 16.50 | 20.00 | 13.00 | | | | Sodium (Na) | Aesthetic 180 | | | | | | | | Heath 180 ug/L | 212.17 | 380.00 | 62.00 | | | | Sodium Absorption.
Ratio | | 5.78 | 11.00 | 1.70 | | | | Parameter | Water Quality Criteria
(mg/L unless
otherwise specified)
(ADWG guideline
value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and
Tested by an Internal & External
Laboratory | |------------------------|---|--------------------------------|----------------------------|----------------------------|--
--| | | | | BELL | | | | | Sulphate (SO4) | Aesthetic 250 | 20.33 | 27.00 | 14.00 | | | | Temporary Hardness | | 206.17 | 323.00 | 142.00 | | | | Total Dissolved Ions | | 1004.67 | 1540.00 | 495.00 | | | | Total Dissolved Solids | Heath 500 μg/L
Aesthetic 600 μg/L | 808.33 | 1200.00 | 420.00 | | | | Total Hardness | Aesthetic | 260.83 | 323.00 | 219.00 | | | | True Colour | Aesthetic 15 HU | 8.00 | 8.00 | 8.00 | | | | Turbidity | Aesthetic 5 NTU <1 NTU is the target for effective disinfection <0.2 NTU is the target for effective filtration of Cryptosporidium & Gardai | 2.33 | 6.00 | 1.00 | | | | Zinc (Zn) | Aesthetic 3 | 0.06 | 0.06 | 0.06 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and
Tested by an Internal & External
Laboratory | |---------------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | | | | CHIN | ICHILLA | | | | Alkalinity | | 120.38 | 190.00 | 71.00 | 1 R/Month | 13 | | Aluminium (Al) | Aesthetic 0.2 | 0.16 | 0.32 | 0.03 | | Free Chlorine 1452 | | Bicarbonate (HCO ³) | | 145.15 | 222.00 | 87.00 | | pH 1444
Turbidity 1407 | | Boron (B) | Heath 4 | 0.04 | 0.06 | 0.03 | | | | Calcium (Ca) | | 30.46 | 40.00 | 19.00 | | | | Carbonate (CO ³) | | 1.03 | 3.00 | 0.10 | | | | Chloride (CI) | Aesthetic 250 | 95.46 | 130.00 | 40.00 | | | | Conductivity | | 694.62 | 790.00 | 540.00 | | | | Copper (Cu) | Aesthetic 1
Heath 2 | 0.00 | 0.00 | 0.00 | | | | Figure of Merit Ratio | | 1.08 | 1.70 | 0.60 | | | | Fluoride (F) | Heath 1.5 | 0.60 | 0.75 | 0.18 | | | | Hydrogen (H) | | 0.00 | 0.00 | 0.00 | | | | Hydroxide (OH) | | 0.00 | 0.00 | 0.00 | | | | Iron (Fe) | Aesthetic 0.3 | 0.01 | 0.01 | 0.01 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and
Tested by an Internal & External
Laboratory | |----------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | | | | CHIN | ICHILLA | | | | Magnesium (mg) | | 22.00 | 30.00 | 12.00 | | | | Manganese (Mn) | Aesthetic 01
Heath 0.5 | 0.00 | 0.00 | 0.00 | | | | Mole Ratio | | 2.19 | 3.20 | 0.90 | | | | Nitrate (NO ³) | Aesthetic 50 | 1.78 | 5.80 | 0.11 | | | | pН | Aesthetic 6.5 - 8.5pH | 7.95 | 8.38 | 7.30 | | | | pH Sat | | 7.95 | 8.30 | 7.60 | | | | Potassium (K) | | 5.09 | 5.70 | 4.30 | | | | Residual Alkalinity | Aesthetic 150 | 0.00 | 0.00 | 0.00 | | | | Saturation Index | | -0.01 | 0.70 | -1.00 | | | | Silica | Aesthetic 80 | 10.85 | 14.00 | 8.20 | | | | Sodium (Na) | Aesthetic 180
Heath 180 ug/L | 73.38 | 89.00 | 59.00 | | | | Sodium Absorpt. Ratio | | 2.58 | 3.70 | 1.70 | | | | Sulphate (SO4) | Aesthetic 250 | 68.70 | 120.00 | 5.10 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water
Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and
Tested by an Internal & External
Laboratory | |------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | | | | CHIN | ICHILLA | | | | Temporary Hardness | | 120.38 | 190.00 | 71.00 | | | | Total Dissolved Ions | | 0.16 | 0.32 | 0.03 | | | | Total Dissolved Solids | Heath 500 µg/L Aesthetic 600 µg/L | 145.15 | 222.00 | 87.00 | | | | Total Hardness | Aesthetic | 0.04 | 0.06 | 0.03 | | | | True Colour
15 | Aesthetic 15 HU | 30.46 | 40.00 | 19.00 | | | | Turbidity | Aesthetic 5 NTU <1 NTU is the target for effective disinfection <0.2 NTU is the target for effective filtration of Cryptosporidium & Gardai | 1.03 | 3.00 | 0.10 | | | | Zinc (Zn) | Aesthetic 3 | 95.46 | 130.00 | 40.00 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |---------------------------------|---|-----------------------------|----------------------------|----------------------------|--|--| | | | | CONDAM | NE | | | | Alkalinity | | 128.91 | 170.00 | 92.00 | 1 R/ Month | 11 | | Aluminium (AI) | Aesthetic 0.2 | 0.03 | 0.06 | 0.03 | | Free Chlorine 662 | | Bicarbonate (HCO ³) | | 153.18 | 205.00 | 110.00 | | pH 659
Turbidity 646 | | Boron (B) | Heath 4 | 0.09 | 0.15 | 0.04 | | | | Calcium (Ca) | | 26.64 | 42.00 | 15.00 | | | | Carbonate (CO ³) | | 1.94 | 3.60 | 0.40 | | | | Chloride (CI) | Aesthetic 250 | 111.45 | 170.00 | 49.00 | | | | Conductivity | | 621.82 | 870.00 | 370.00 | | | | Copper (Cu) | Aesthetic 1 Heath 2 | 0.00 | 0.00 | 0.00 | | | | Figure of Merit Ratio | | 1.04 | 1.30 | 0.90 | | | | Fluoride (F) | Heath 1.5 | 0.12 | 0.15 | 0.09 | | | | Hydrogen (H) | | 0.00 | 0.00 | 0.00 | | | | Hydroxide (OH) | | 0.00 | 0.00 | 0.00 | | | | Iron (Fe) | Aesthetic 0.3 | 0.01 | 0.01 | 0.01 | | | | Magnesium (mg) | | 19.45 | 31.00 | 10.00 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise | Average Water Quality Value | Max Water Quality Value | Min Water Quality Value | No. of Samples
Required to be | No. of Samples Collected and Tested by an Internal & External Laboratory | |----------------------------|---|-----------------------------|-------------------------|-------------------------|----------------------------------|--| | | specified) | | | | Collected | | | | (ADWG guideline value) | | | | (as per the DWQMP) | | | | | | CONDAMI | NE | | | | Manganese (Mn) | Aesthetic 01 | 0.00 | 0.00 | 0.00 | | | | | Heath 0.5 | | | | | | | Mole Ratio | | 2.05 | 2.50 | 1.70 | | | | Nitrate (NO ³) | Aesthetic 50 | 1.89 | 6.20 | 0.05 | | | | pH | Aesthetic 6.5 - 8.5pH | 8.25 | 8.49 | 7.71 | | | | pH Sat | | 7.98 | 8.30 | 7.60 | | | | Potassium (K) | | 4.74 | 5.40 | 3.90 | | | | Residual Alkalinity | Aesthetic 150 | 0.05 | 0.30 | 0.00 | | | | Saturation Index | | 0.26 | 0.80 | -0.50 | | | | Silica | Aesthetic 80 | 9.18 | 14.00 | 3.70 | | | | Sodium (Na) | Aesthetic 180 | 64.64 | 89.00 | 41.00 | | | | | Heath 180 ug/L | | | | | | | Sodium Absorpt. Ratio | | 2.31 | 2.80 | 1.70 | | | | Sulphate (SO4) | Aesthetic 250 | 4.57 | 6.30 | 2.00 | | | | Temporary Hardness | | 126.91 | 174.00 | 81.00 | | | | Total Dissolved Ions | | 388.45 | 535.00 | 248.00 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | | | | | |------------------------|---|-----------------------------|----------------------------|----------------------------|--|--|--|--|--|--| | | CONDAMINE | | | | | | | | | | | Total Dissolved Solids | Heath 500 μg/L
Aesthetic 600 μg/L | 320.00 | 440.00 | 200.00 | | | | | | | | Total Hardness
200 | Aesthetic | 147.09 | 231.00 | 81.00 | | | | | | | | True Colour
15 | Aesthetic 15 HU | 8.00 | 8.00 | 8.00 | | | | | | | | Turbidity | Aesthetic 5 NTU <1 NTU is the target for effective disinfection <0.2 NTU is the target for effective filtration of Cryptosporidium & Gardai | 1.00 | 1.00 | 1.00 | | | | | | | | Zinc (Zn) | Aesthetic 3 | 0.06 | 0.06 | 0.06 | | | | | | | | F | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested
by an Internal & External Laboratory | | | | |---|------------|---|-----------------------------|----------------------------|--------|--|---|--|--|--| | | DALBY | | | | | | | | | | | F | Alkalinity | | 213.00 | 280.00 | 150.00 | 4 R/Month | 56 | | | | | Parameter |
Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |---------------------------------|---|-----------------------------|----------------------------|----------------------------|--|--| | | | | DALBY | | | | | Aluminium (Al) | Aesthetic 0.2 | 0.03 | 0.03 | 0.03 | | Free Chlorine 1163 | | Bicarbonate (HCO ³) | | 256.30 | 330.00 | 186.00 | | pH 1167 Turbidity 1164 | | Boron (B) | Heath 4 | 0.08 | 0.14 | 0.04 | | | | Calcium (Ca) | | 27.38 | 42.00 | 13.00 | | | | Carbonate (CO ₃) | | 1.48 | 2.90 | 0.10 | | | | Chloride (CI) | Aesthetic 250 | 143.40 | 180.00 | 110.00 | | | | Conductivity | | 965.60 | 1200.00 | 810.00 | | | | Copper (Cu) | Aesthetic 1 | | | | | | | | Heath 2 | 0.02 | 0.07 | 0.01 | | | | Figure of Merit Ratio | | 0.54 | 1.00 | 0.30 | | | | Fluoride (F) | Heath 1.5 | 0.66 | 0.79 | 0.07 | | | | Hydrogen (H) | | 0.00 | 0.00 | 0.00 | | | | Hydroxide (OH) | | 0.00 | 0.00 | 0.00 | | | | Iron (Fe) | Aesthetic 0.3 | 0.01 | 0.01 | 0.01 | | | | Magnesium (mg) | | 22.68 | 33.00 | 12.00 | | | | Manganese (Mn) | Aesthetic 01 | | | | | | | | Heath 0.5 | 0.00 | 0.01 | 0.00 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |----------------------------|---|-----------------------------|----------------------------|----------------------------|--|--| | | | | DALBY | | | | | Mole Ratio | | 2.30 | 3.70 | 1.90 | | | | Nitrate (NO ³) | Aesthetic 50 | 1.31 | 3.40 | 0.40 | | | | рН | Aesthetic 6.5 - 8.5pH | 7.87 | 8.14 | 6.55 | | | | pH Sat | | 7.75 | 8.20 | 7.50 | | | | Potassium (K) | | 2.44 | 3.60 | 0.96 | | | | Residual Alkalinity | Aesthetic 150 | 1.03 | 1.70 | 0.00 | | | | Saturation Index | | 0.11 | 0.60 | -1.40 | | | | Silica | Aesthetic 80 | 20.20 | 26.00 | 14.00 | | | | Sodium (Na) | Aesthetic 180 | | | | | | | | Heath 180 ug/L | 142.40 | 180.00 | 110.00 | | | | Sodium Absorpt. Ratio | | 5.04 | 6.70 | 3.20 | | | | Sulphate (SO4) | Aesthetic 250 | 53.22 | 91.00 | 20.00 | | | | Temporary Hardness | | 161.96 | 240.00 | 83.00 | | | | Total Dissolved Ions | | 652.82 | 830.00 | 528.00 | | | | Total Dissolved Solids | Heath 500 µg/L | | | | | | | | Aesthetic 600 µg/L | | | | | | | | | 543.27 | 690.00 | 450.00 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |-----------------------|---|-----------------------------|----------------------------|----------------------------|--|--| | | | | DALBY | | | | | Total Hardness
200 | Aesthetic | 162.45 | 240.00 | 83.00 | | | | True Colour
15 | Aesthetic 15 HU | 8.00 | 8.00 | 8.00 | | | | Turbidity | Aesthetic 5 NTU | | | | | | | | <1 NTU is the target for effective disinfection | | | | | | | | <0.2 NTU is the target for effective filtration of Cryptosporidium & Gardai | 1.00 | 1.00 | 1.00 | | | | Zinc (Zn) | Aesthetic 3 | 0.06 | 0.06 | 0.06 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested
by an Internal & External Laboratory | |---------------------------------|---|-----------------------------|----------------------------|----------------------------|--|---| | | | | JANDOWAE | | | | | Alkalinity | | 60.82 | 77.00 | 48.00 | 1 R/MONTH | 12 | | Aluminium (AI) | Aesthetic 0.2 | 0.04 | 0.05 | 0.03 | | Free Chlorine 1245 | | Bicarbonate (HCO ³) | | 73.55 | 93.00 | 58.00 | | pH 1245 | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |------------------------------|---|-----------------------------|----------------------------|----------------------------|--|--| | | | | JANDOWA | ΛE | | | | Boron (B) | Heath 4 | 0.04 | 0.06 | 0.03 | | Turbidity 1245 | | Calcium (Ca) | | 8.63 | 11.00 | 7.10 | | | | Carbonate (CO ³) | | 0.25 | 0.80 | 0.00 | | | | Chloride (CI) | Aesthetic 250 | 26.91 | 31.00 | 24.00 | | | | Conductivity | | 218.18 | 260.00 | 200.00 | | | | Copper (Cu) | Aesthetic 1 | | | | | | | | Heath 2 | 0.00 | 0.00 | 0.00 | | | | Figure of Merit Ratio | | 0.60 | 0.70 | 0.50 | | | | Fluoride (F) | Heath 1.5 | 0.14 | 0.20 | 0.10 | | | | Hydrogen (H) | | 0.00 | 0.00 | 0.00 | | | | Hydroxide (OH) | | 0.00 | 0.00 | 0.00 | | | | Iron (Fe) | Aesthetic 0.3 | 0.01 | 0.01 | 0.01 | | | | Magnesium (mg) | | 3.57 | 4.30 | 3.00 | | | | Manganese (Mn) | Aesthetic 01 | | | | | | | | Heath 0.5 | 0.00 | 0.00 | 0.00 | | | | Mole Ratio | | 2.44 | 3.20 | 1.80 | | | | Nitrate (NO ³) | Aesthetic 50 | 3.15 | 3.90 | 2.40 | | | | Parameter | Water Quality Criteria | Average Water Quality | Max Water Quality | Min Water Quality | No. of Samples | No. of Samples Collected and Tested by an Internal & External Laboratory | |------------------------|------------------------|-----------------------|-------------------|-------------------|--------------------|--| | | (mg/L unless otherwise | Value | Value | Value | Required to be | | | | specified) | | | | Collected | | | | (ADWG guideline value) | | | | (as per the DWQMP) | | | | | | JANDOW/ | NE | | | | рН | Aesthetic 6.5 - 8.5pH | 7.63 | 8.27 | 6.95 | | | | pH Sat | | 8.73 | 8.90 | 8.50 | | | | Potassium (K) | | 6.01 | 6.70 | 5.30 | | | | Residual Alkalinity | Aesthetic 150 | 0.49 | 0.70 | 0.30 | | | | Saturation Index | | -1.12 | -0.40 | -1.90 | | | | Silica | Aesthetic 80 | 11.64 | 19.00 | 10.00 | | | | Sodium (Na) | Aesthetic 180 | | | | | | | | Heath 180 ug/L | 27.36 | 35.00 | 23.00 | | | | Sodium Absorpt. Ratio | | 1.98 | 2.30 | 1.80 | | | | Sulphate (SO4) | Aesthetic 250 | 3.53 | 4.70 | 2.40 | | | | Temporary Hardness | | 36.18 | 44.00 | 30.00 | | | | Total Dissolved Ions | | 153.18 | 187.00 | 133.00 | | | | Total Dissolved Solids | Heath 500 µg/L | | | | | | | | Aesthetic 600 µg/L | | | | | | | | | 129.09 | 160.00 | 120.00 | | | | Total Hardness
200 | Aesthetic | 36.18 | 44.00 | 30.00 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality
Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |-------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | | | | JANDOWAE | | | | | True Colour
15 | Aesthetic 15 HU | 8.00 | 8.00 | 8.00 | | | | Turbidity | Aesthetic 5 NTU | | | | | | | | <1 NTU is the target for effective disinfection | | | | | | | | <0.2 NTU is the target for effective filtration of Cryptosporidium & Gardai | 1.00 | 1.00 | 1.00 | | | | Zinc (Zn) | Aesthetic 3 | 0.06 | 0.06 | 0.06 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality
Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |---------------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | | | | MILES | | | | | Alkalinity | | 86.67 | 100.00 | 78.00 | 1 R/MONTH | 12 | | Aluminium (Al) | Aesthetic 0.2 | 0.03 | 0.06 | 0.03 | | Free Chlorine 827 | | Bicarbonate (HCO ³) | | 104.92 | 121.00 | 95.00 | | pH 786 Turbidity 796 | | Boron (B) | Heath 4 | 0.10 | 0.13 | 0.05 | | | | Parameter | Water Quality
Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality
Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |------------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | | | | MILES | · | | | | Calcium (Ca) | | 9.38 | 11.00 | 7.80 | | | | Carbonate (CO ³) | | 0.50 | 1.40 | 0.10 | | | | Chloride (CI) | Aesthetic 250 | 80.25 | 96.00 | 69.00 | | | | Conductivity | | 435.00 | 510.00 | 390.00 | | | | Copper (Cu) | Aesthetic 1 Heath 2 | 0.00 | 0.00 | 0.00 | | | | Figure of Merit Ratio | | 0.20 | 0.20 | 0.20 | | | | Fluoride (F) | Heath 1.5 | 0.09 | 0.11 | 0.07 | | | | Hydrogen (H) | | 0.00 | 0.00 | 0.00 | | | | Hydroxide (OH) | | 0.00 | 0.00 | 0.00 | | | | Iron (Fe) | Aesthetic 0.3 | 0.01 | 0.01 | 0.01 | | | | Magnesium (mg) | | 1.32 | 3.10 | 0.81 | | | | Manganese (Mn) | Aesthetic 01
Heath 0.5 | 0.00 | 0.00 | 0.00 | | | | Mole Ratio | | 2.54 | 2.90 | 2.10 | | | | Nitrate (NO³) | Aesthetic 50 | 0.34 | 0.70 | 0.07 | | | | рН | Aesthetic 6.5 - 8.5pH | 7.74 | 8.18 | 7.43 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |------------------------|---|-----------------------------|----------------------------|----------------------------|--|--| | | | | MILES | | | | | pH Sat | | 8.54 | 8.70 | 8.40 | | | | Potassium (K) | | 2.44 | 3.40 | 2.10 | | | | Residual Alkalinity | Aesthetic 150 | 1.15 | 1.40 | 1.00 | | | | Saturation Index | | -0.82 | -0.30 | -1.20 | | | | Silica | Aesthetic 80 | 6.32 | 9.70 | 5.00 | | | | Sodium (Na) | Aesthetic 180
Heath 180 ug/L | 78.83 | 96.00 | 69.00 | | | | Sodium Absorpt. Ratio | | 6.38 | 7.40 | 5.60 | | | | Sulphate (SO4) | Aesthetic 250 | 1.53 | 4.00 | 0.70 | | | | Temporary Hardness | | 28.92 | 37.00 | 26.00 | | | | Total Dissolved Ions | | 279.33 | 330.00 | 247.00 | | | | Total Dissolved Solids | Heath 500 μg/L
Aesthetic 600 μg/L | 233.33 | 270.00 | 210.00 | | | | Total Hardness
200 | Aesthetic | 28.92 | 37.00 | 26.00 | | | | True Colour
15 | Aesthetic 15 HU | 8.00 | 8.00 | 8.00 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality
Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | | | | |-----------|---|--------------------------------|----------------------------|----------------------------|--|--|--|--|--| | | MILES | | | | | | | | | | Turbidity | Aesthetic 5 NTU <1 NTU is the target for effective disinfection <0.2 NTU is the target for effective filtration of Cryptosporidium & Gardai | 1.17 | 3.00 | 1.00 | | | | | | | Zinc (Zn) | Aesthetic 3 | 0.06 | 0.06 | 0.06 | | | | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality
Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |---------------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | | | | TARA | | | | | Alkalinity | | 250.0555556 | 610 | 23 | 1 R/MONTH | 15 | | Aluminium (AI) | Aesthetic 0.2 | 0.488333333 | 6.1 | 0.03 | | Free Chlorine 1207 | | Bicarbonate (HCO ³) | | 288 | 713 | 28 | | pH 1208 Turbidity 1199 | | Boron (B) | Heath 4 | 0.23555556 | 0.79 | 0.04 | | | | Calcium (Ca) | | 1.43333333 | 3.2 | 0.4 | | | | Carbonate (CO ³) | | 8.338888889 | 27 | 0 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |----------------------------|---|-----------------------------|----------------------------|----------------------------|--|--| | | | | TARA | | | | | Chloride (CI) | Aesthetic 250 | 63.27777778 | 120 | 18 | | | | Conductivity | | 677.2222222 | 1500 | 130 | | | | Copper (Cu) | Aesthetic 1 | | | | | | | | Heath 2 | 0.0045 | 0.022 | 0.003 | | | | Figure of Merit Ratio | | 0.07222222 | 0.3 | 0 | | | | Fluoride (F) | Heath 1.5 | 0.360388889 | 1.2 | 0.007 | | | | Hydrogen (H) | | 0 | 0 | 0 | | | | Hydroxide (OH) | | 0 | 0 | 0 | | | | Iron (Fe) | Aesthetic 0.3 | 0.27055556 | 3.1 | 0.01 | | | | Magnesium (mg) | | 0.64 | 2.3 | 0.03 | | | | Manganese (Mn) | Aesthetic 01 | | | | | | | | Heath 0.5 | 0.001983333 | 0.008 | 0.0007 | | | | Mole Ratio | | 1.97222222 | 4.1 | 0.6 | | | | Nitrate (NO ³) | Aesthetic 50 | 0.369222222 | 1.1 | 0.006 | | | | рН | Aesthetic 6.5 - 8.5pH | 8.003888889 | 9.14 | 6.57 | | | | pH Sat | | 9.43333333 | 11.1 | 8.1 | | | | Potassium (K) | | 1.53222222 | 3.2 | 0.22 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality
Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | | | | TARA | | · | · | | Residual Alkalinity | Aesthetic 150 | 4.84444444 | 12 | 0.1 | | | | Saturation Index | | -1.35555556 | 1.2 | -3.1 | | | | Silica | Aesthetic 80 | 18.2222222 | 35 | 13 | | | | Sodium (Na) | Aesthetic 180 | | | | | | | | Heath 180 ug/L | 157.4444444 | 360 | 23 | | | | Sodium Absorpt. Ratio | | 56.57222222 | 136.3 | 2.7 | | | | Sulphate (SO4) | Aesthetic 250 | 2.133333333 | 6.8 | 0.2 | | | | Temporary Hardness | | 5.90555556 | 17 | 0.1 | | | | Total Dissolved Ions | | 505.5 | 1210 | 90 | | | | Total Dissolved Solids | Heath 500 µg/L | | | | | | | | Aesthetic 600 μg/L | | | | | | | | | 394.5 | 860 | 97 | | | | Total Hardness
200 | Aesthetic | 5.90555556 | 17 | 0.1 | | | | True Colour
15 | Aesthetic 15 HU | 100.7777778 | 490 | 8 | | | | Turbidity | Aesthetic 5 NTU | | | | | | | | <1 NTU is the target for effective disinfection | 170.1666667 | 870 | 1 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | | | | |-----------|---|-----------------------------|----------------------------|----------------------------|--|--|--|--|--| | | TARA | | | | | | | | | | | <0.2 NTU is the target for effective filtration of Cryptosporidium & Gardai | | | | | | | | | | Zinc (Zn) | Aesthetic 3 | 0.06 | 0.06 | 0.06 | | | | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |---------------------------------|---|-----------------------------|----------------------------|----------------------------|--|--| | | · | | WANDOAN | | | | | Alkalinity | | 82.38 | 85.00 | 80.00 | 1 R/MONTH | 13 | | Aluminium (Al) | Aesthetic 0.2 | 0.03 | 0.05 | 0.03 | | Free Chlorine 479 | | Bicarbonate (HCO ³) | | 99.00 | 102.00 | 96.00 | | pH 477 Turbidity 475 | | Boron (B) | Heath 4 | 0.03 | 0.04 | 0.02 | | | | Calcium (Ca) | | 15.77 | 21.00 | 13.00 | | | | Carbonate (CO ₃) | | 0.63 | 1.10 | 0.30 | - | | | Chloride (CI) | Aesthetic 250 | 47.15 | 58.00 | 41.00 | |
| | Conductivity | | 306.92 | 340.00 | 290.00 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |----------------------------|---|-----------------------------|----------------------------|----------------------------|--|--| | | | | WANDOA | N | | | | Copper (Cu) | Aesthetic 1 Heath 2 | 0.00 | 0.00 | 0.00 | | | | Figure of Merit Ratio | | 0.39 | 0.50 | 0.30 | | | | Fluoride (F) | Heath 1.5 | 0.29 | 0.33 | 0.27 | | | | Hydrogen (H) | | 0.00 | 0.00 | 0.00 | | | | Hydroxide (OH) | | 0.00 | 0.00 | 0.00 | | | | Iron (Fe) | Aesthetic 0.3 | 0.01 | 0.03 | 0.01 | | | | Magnesium (mg) | | 0.17 | 0.31 | 0.05 | | | | Manganese (Mn) | Aesthetic 01
Heath 0.5 | 0.00 | 0.00 | 0.00 | | | | Mole Ratio | | 2.14 | 2.50 | 1.80 | | | | Nitrate (NO ³) | Aesthetic 50 | 0.35 | 0.49 | 0.30 | | | | рН | Aesthetic 6.5 - 8.5pH | 8.03 | 8.35 | 7.76 | | | | pH Sat | | 8.34 | 8.40 | 8.20 | | | | Potassium (K) | | 2.02 | 2.30 | 1.80 | | | | Residual Alkalinity | Aesthetic 150 | 0.84 | 1.00 | 0.60 | | | | Saturation Index | | -0.32 | -0.10 | -0.60 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality
Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | | | | WANDOA | N | | | | Silica | Aesthetic 80 | 24.69 | 26.00 | 24.00 | | | | Sodium (Na) | Aesthetic 180
Heath 180 ug/L | 47.46 | 50.00 | 47.00 | | | | Sodium Absorpt. Ratio | | 3.28 | 3.70 | 2.80 | | | | Sulphate (SO4) | Aesthetic 250 | 0.21 | 0.30 | 0.20 | | | | Temporary Hardness | | 40.23 | 55.00 | 34.00 | | | | Total Dissolved Ions | | 213.08 | 233.00 | 203.00 | | | | Total Dissolved Solids | Heath 500 µg/L Aesthetic 600 µg/L | 188.46 | 210.00 | 180.00 | | | | Total Hardness
200 | Aesthetic | 40.23 | 55.00 | 34.00 | | | | True Colour
15 | Aesthetic 15 HU | 8.38 | 12.00 | 8.00 | | | | Turbidity | Aesthetic 5 NTU <1 NTU is the target for effective disinfection <0.2 NTU is the target for effective filtration of Cryptosporidium & Gardai | 1.00 | 1.00 | 1.00 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality
Value | Max Water Quality
Value | Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | | | |-----------|---|--------------------------------|----------------------------|-------|--|--|--|--| | WANDOAN | | | | | | | | | | Zinc (Zn) | Aesthetic 3 | 0.06 | 0.06 | 0.06 | | | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | | | |---------------------------------|---|-----------------------------|----------------------------|----------------------------|--|--|--|--| | | | | WARRA | | | | | | | Alkalinity | | 150.91 | 190.00 | 120.00 | 1 R/2 MONTH | 11 | | | | Aluminium (Al) | Aesthetic 0.2 | 0.05 | 0.11 | 0.03 | | Free Chlorine 895 | | | | Bicarbonate (HCO ³) | | 178.82 | 225.00 | 137.00 | | pH 895
Turbidity 895 | | | | Boron (B) | Heath 4 | 0.06 | 0.06 | 0.06 | | . a. a. a. a. | | | | Calcium (Ca) | | 30.18 | 36.00 | 23.00 | | | | | | Carbonate (CO ³) | | 2.06 | 3.60 | 0.90 | | | | | | Chloride (CI) | Aesthetic 250 | 200.00 | 220.00 | 170.00 | | | | | | Conductivity | | 955.45 | 1100.00 | 860.00 | | | | | | Copper (Cu) | Aesthetic 1 | | | | | | | | | | Heath 2 | 0.00 | 0.01 | 0.00 | | | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality
Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |----------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | Figure of Merit Ratio | | 0.86 | 1.10 | 0.70 | | | | Fluoride (F) | Heath 1.5 | 0.28 | 0.31 | 0.23 | | | | Hydrogen (H) | | 0.00 | 0.00 | 0.00 | | | | Hydroxide (OH) | | 0.00 | 0.00 | 0.00 | | | | Iron (Fe) | Aesthetic 0.3 | 0.01 | 0.01 | 0.01 | | | | Magnesium (mg) | | 29.73 | 40.00 | 24.00 | | | | Manganese (Mn) | Aesthetic 01 | | | | | | | | Heath 0.5 | 0.01 | 0.02 | 0.00 | | | | Mole Ratio | | 2.25 | 2.60 | 2.00 | | | | Nitrate (NO ³) | Aesthetic 50 | 0.46 | 1.10 | 0.19 | | | | рН | Aesthetic 6.5 - 8.5pH | 8.22 | 8.44 | 7.92 | | | | pH Sat | | 7.85 | 8.10 | 7.70 | | | | Potassium (K) | | 10.90 | 12.00 | 8.80 | | | | Residual Alkalinity | Aesthetic 150 | 0.00 | 0.00 | 0.00 | | | | Saturation Index | | 0.37 | 0.70 | 0.10 | | | | Silica | Aesthetic 80 | 2.43 | 3.80 | 0.85 | | | | Sodium (Na) | Aesthetic 180 | | | | | | | | Heath 180 ug/L | 107.45 | 110.00 | 92.00 | | | | Parameter | Water Quality Criteria (mg/L unless otherwise specified) (ADWG guideline value) | Average Water Quality
Value | Max Water Quality
Value | Min Water Quality
Value | No. of Samples Required to be Collected (as per the DWQMP) | No. of Samples Collected and Tested by an Internal & External Laboratory | |------------------------|---|--------------------------------|----------------------------|----------------------------|--|--| | Sodium Absorpt. Ratio | | 3.32 | 3.70 | 2.90 | | | | Sulphate (SO4) | Aesthetic 250 | 7.65 | 12.00 | 6.40 | | | | Temporary Hardness | | 159.45 | 239.00 | 117.00 | | | | Total Dissolved Ions | | 566.55 | 664.00 | 501.00 | | | | Total Dissolved Solids | Heath 500 μg/L
Aesthetic 600 μg/L | 477.27 | 550.00 | 420.00 | | | | Total Hardness
200 | Aesthetic | 193.91 | 253.00 | 138.00 | | | | True Colour
15 | Aesthetic 15 HU | 8.00 | 8.00 | 8.00 | | | | Turbidity | Aesthetic 5 NTU | | | | | | | | <1 NTU is the target for effective disinfection | | | | | | | | <0.2 NTU is the target for effective filtration of Cryptosporidium & Gardai | 1.00 | 1.00 | 1.00 | | | | Zinc (Zn) | Aesthetic 3 | 0.06 | 0.06 | 0.06 | | | ## 5 Compliance with Annual E.coli Rolling Annual Value Table 5-1 - Compliance with Annual E.coli Rolling Annual Value #### CALCULATE PERCENTAGE USING A TWELVE (12) MONTH 'ROLLING' ANNUAL VALUE The Public Health Regulation 2005 (the regulation) require that 98 per cent of samples taken in a 12-MONTH period should contain no E. Coli. This requirement is referred to as the 'annual value' in Schedule 3A of the regulation. This requirement comes into effect once you have 12 MONTHs data and should be assessed every MONTH based on the previous 12 MONTHs data (so that it is a 'rolling' assessment). | | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | |---|--------|-----------|--------|--------|--------|--------|--------|--------|-------|-----------|-------|-------| | No. of samples collected | 40 | <i>37</i> | 41 | 24 | 16 | 14 | 19 | 11 | 23 | <i>37</i> | 40 | 38 | | No. of samples collected in which E. coli is detected (i.e., a failure) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | No. of samples collected in previous 12-MONTH period | 432 | 433 | 440 | 424 | 408 | 384 | 363 | 352 | 336 | 340 | 332 | 340 | | No. of failures for previous 12-MONTH period | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | % of samples that comply | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 99.7% | 99.7% | 99.7% | 99.7% | | Compliance with 98% annual value | YES #### Drinking water scheme: CHINCHILLA Verification Monitoring Results (2022 - 2023) | | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | Мау | Jun | | |--|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--| | No. of samples collected | 28 | 33 | 30 | 18 | 32 | 19 | 26 | 49 | 29 | 28 | 33 | 31 | | | No. of samples
collected in which
E. coli is detected
(i.e., a
failure) | O | o | 0 | 0 | o | 0 | 0 | o | o | 0 | 0 | o | | | No. of samples
collected in
previous 12-
MONTH period | 309 | 318 | 334 | 338 | 345 | 341 | 346 | 363 | 357 | 357 | 358 | 356 | | | No. of failures for previous 12-MONTH period | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | % of samples that comply | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | | | Compliance with 98% annual value | YES | ## Drinking water scheme: CONDAMINE Verification Monitoring Results (2022 - 2023) | | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | |--|------|------|------|------|------|------|------|------|------|------|------|------| | No. of samples collected | 9 | 7 | 5 | 11 | 17 | 14 | 11 | 4 | 9 | 11 | 10 | 7 | | No. of samples
collected in which
E. coli is detected
(i.e., a failure) | o | o | o | o | o | o | o | o | o | o | o | 0 | | No. of samples
collected in
previous 12-
MONTH period | 131 | 135 | 134 | 139 | 143 | 148 | 151 | 137 | 127 | 123 | 118 | 115 | | No. of failures for
previous 12-
MONTH period | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | % of samples that comply | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | | Compliance with
98% annual value | YES #### Drinking water scheme: DALBY Verification Monitoring Results (2022 - 2023) Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun No. of samples 21 21 26 33 29 24 25 28 23 15 24 32 collected No. of samples collected in which 0 0 0 0 0 0 0 0 0 0 0 0 E. coli is detected (i.e., a failure) No. of samples collected in 169 173 183 189 182 195 201 226 249 261 277 301 previous 12-MONTH period No. of failures for previous 12-2 2 2 2 0 0 0 0 0 0 0 0 **MONTH** period % of samples that 98.8% 98.8% 98.9% 98.9% 100% 100% 100% 100% 100% 100% 100% 100% comply Compliance with YES 98% annual value ### Drinking water scheme: JANDOWAE Verification Monitoring Results (2022 - 2023) | | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | |---|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | No. of samples collected | 25 | 39 | 20 | 24 | 28 | 21 | 26 | 20 | 23 | 24 | 27 | 22 | | No. of samples collected
in which E. coli is
detected (i.e., a failure) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | No. of samples collected in previous 12-MONTH period | 286 | 305 | 304 | 304 | 307 | 305 | 301 | 299 | 295 | 301 | 301 | 299 | | No. of failures for previous 12-MONTH period | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | % of samples that comply | 100.0% | 99.7% | 99.7% | 99.7% | 99.7% | 99.7% | 99.7% | 99.7% | 99.7% | 99.7% | 99.7% | 99.7% | | Compliance with 98% annual value | YES #### Drinking water scheme: MILES Verification Monitoring Results (2022 - 2023) Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun No. of samples 21 14 17 0 6 14 0 16 6 7 20 18 collected No. of samples collected in which 0 0 0 0 0 0 0 0 0 0 0 0 E. coli is detected (i.e., a failure) No. of samples collected in 149 160 159 143 133 134 124 140 141 129 135 139 previous 12-MONTH period No. of failures for previous 12-0 0 0 0 0 0 0 0 0 0 0 0 **MONTH** period % of samples that 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% comply Compliance with YES 98% annual value #### Drinking water scheme: TARA Verification Monitoring Results (2022 - 2023) Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun No. of samples 13 8 9 9 7 11 15 13 7 23 13 collected No. of samples collected in which 0 0 0 0 0 0 0 0 0 0 0 0 E. coli is detected (i.e., a failure) No. of samples collected in 120 117 127 126 119 117 115 116 117 110 125 132 previous 12-MONTH period No. of failures for previous 12-0 0 0 0 0 0 0 0 0 0 0 0 **MONTH** period % of samples that 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% comply YES YES YES YES YES Compliance with YES YES YES YES YES YES YES 98% annual value # Drinking water scheme: WANDOAN Verification Monitoring Results (2022 - 2023) | Diffiking water scheme. WANDOAN Verification Worldoning Results (2022 - 2023) | | | | | | | | | | | | | |--|------|------|------|------|------|------|------|------|------|------|------|------| | | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | Мау | Jun | | No. of samples collected | 0 | 24 | 16 | 4 | 7 | 16 | 2 | 0 | 0 | 0 | 0 | 0 | | No. of samples
collected in which
E. coli is detected
(i.e., a failure) | o | o | o | o | 0 | o | 0 | o | 0 | o | 0 | o | | No. of samples
collected in
previous 12-
MONTH period | 27 | 51 | 67 | 71 | 78 | 85 | 85 | 85 | 85 | 85 | 85 | 69 | | No. of failures for previous 12-MONTH period | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | % of samples that comply | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | | Compliance with 98% annual value | YES #### Drinking water scheme: WARRA Verification Monitoring Results (2022 - 2023) Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun No. of samples 21 21 15 23 22 19 22 20 22 22 23 24 collected No. of samples collected in which 0 0 0 0 0 0 0 0 0 0 0 0 E. coli is detected (i.e., a failure) No. of samples collected in 420 405 394 368 353 332 312 316 300 277 250 254 previous 12-MONTH period No. of failures for previous 12-0 0 0 0 0 0 0 0 0 0 0 0 **MONTH** period % of samples that 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% comply YES YES YES YES YES Compliance with YES YES YES YES YES YES YES 98% annual value # 6 Incidents reported to the Regulator The incidents reported to the regulator and management actions undertaken over the 2022 - 2023 year are provided in this section. Table 6-1 - Incidents Reported to the Regulator | Scheme | Report
No. | Incident | Sample
Location | Sample
Date | Date
Reported | Follow Up S | ample Date/Actions | Incident Closed Date | |----------|----------------------|----------|--------------------|----------------|------------------|-------------|---|----------------------| | Tara | DWI-480-
22-09719 | Chlorate | Tower | 27/07/2022 | 10/08/2022 | CLOSED | Request a re-sample at Tower to be carried out on Thursday 11.08.2022. Terry reviewing Chlorine deliveries - age, %, quantity. 09/12/2022 - Emailed Part B to Regulator | 14.10.2021 | | Jandowae | DWI-480-
22-09728 | E. coli | Works Depot | 15/08/2022 | 16/08/2022 | CLOSED | Re-sampled
16/08/2022 11:00am -
Negative for E. coli
24.08.2022 (Emailed
Investigation Report
AW) | 05.12.2022 | | Scheme | Report
No. | Incident | Sample
Location | Sample
Date | Date
Reported | Follow Up S | ample Date/Actions | Incident Closed Date | |------------|----------------------|----------|--|----------------|------------------|-------------|---|----------------------| | Bell | DWI-480-
22-09965 | TTHM | Railway Garden /
Bunya Centre | 9/11/2022 | 25/11/2022 | CLOSED | Update email sent
20.03.2023
Update email sent
19.05.2023
Investigation Report
email sent 01.06.2023 | 12/06/2023 | | Warra | DWI-480-
22-09774 | TTHM | Best Park / School /
Highway Gardens /
WTP | 7/09/2022 | 20/09/2022 | Open | Update email sent 06.01.2023 Update email sent 01.02.2023 Update email sent 24.03.2023 Update email sent 19.05.2023 Update email sent 19.05.2023 Update email sent 02.06.2023 | | | Warra | DWI-480-
22-10094 | Chlorate | Best Park & School | 13/12/2022 | 22/12/2022 | CLOSED | Investigation Report email sent 23.02.2023 | 22.03.2023 | | Chinchilla | DWI-480-
23-10162 | TTHM | Industrial Park/Riverdel/Mackie Park/Beutel Park | 24/01/2023 | 8/02/2023 | Open | Part A email sent
09.02.2023
Update email sent
30.03.2023
Update email sent
19.05.2023
Update email sent
02.06.2023 | | | Scheme | Report
No. | Incident | Sample
Location | Sample
Date | Date
Reported | Follow Up Sa | ample Date/Actions | Incident Closed
Date | |---------|----------------------|-----------|-------------------------------|----------------|------------------|--------------|---|-------------------------| | Wandoan | DWI-480-
23-10169 | Chlorate | Lindsey Oval | 30/01/2023 | 10/02/2023 | CLOSED | Part A email sent ???? Update email sent 04.04.2023 Update email sent 17.04.2023 Update email sent 09.05.2023 (Doc ID 4803050) Investigation Report email sent 23.05.2023 | 12/06/2023 | | Tara | DWI-480-
23-10196 | Chlorate | WTP - Test Point 8 /
Tower | 21/02/2023 | 28/02/2023 | CLOSED | Initial Notification email sent 01.03.2023 Update email sent 21.03.2023 Update email sent 04.04.2023 Update email sent 09.05.2023 (Doc ID 4803052) Investigation Report email sent 01.06.2023 | 15/06/2023 | | Warra | DWI-480-
23-10195 | Turbidity | Tank 1 / Tank 4 | 27/02/2023 | 28/02/2023 | CLOSED | Investigation Report
email sent 07.03.2023 | 24.04.2023 | | Tara | DWI-480-
23-10202 | TTHM | WTP - Test Point 8 /
Tower | 21/02/2023 | 01/03.2023 | CLOSED | Update email sent
21.03.2023
Update email sent
19.05.2023
Investigation Report
email sent 17.07.2023 | 08.08.2023 | | Miles | DWI-480-
23-10201 | Chlorate | Dairy Farmers |
21/02/2023 | 1/03/2023 | CLOSED | Initial Notification email sent 02.03.2023 Update email sent 09.05.2023 Investigation Report email sent 01.06.2023 | 12/06/2023 | July 2022 - June 2023 ### **Drinking Water Quality Management Plan Annual Report Western Downs Regional Council** | Scheme | Report
No. | Incident | Sample
Location | Sample
Date | Date
Reported | Follow Up S | Incident Closed Date | | |--------|----------------------|----------------|--------------------|----------------|------------------|-------------|--|------------| | Bell | DWI-480-
23-10222 | High Turbidity | WTP | 23/03/2023 | 23/03/2023 | CLOSED | Initial Notification emailed 23.03.2023 Micro sampling returned ABSENT Coliforms and E.coli when taken out at 16:55 on 23.03.2023 Investigation Report email sent 06.04.2023 | 24.04.2023 | | Tara | | TCAA | WTP | 17/05/2023 | 2/06/2023 | Open | | | | Warra | DWI-480-
23-10313 | High Chlorine | Water Tower | 28/06/2023 | 28/06/2023 | CLOSED | Part A email sent
29.06.2023
Investigation Report
email sent 18.07.2023 | 8/08/2023 | # 7 Customer complaints WDRC received 15 complaints relating to water quality during 2022 - 2023 Table 7-1 - Customer Complaints (Water Quality) | Scheme | Health concern | Dirty water | Taste and odour | Other | |------------|----------------|-------------|-----------------|-------| | Bell | 0 | 0 | 0 | 0 | | Chinchilla | 0 | 5 | 0 | 0 | | Condamine | 0 | 0 | 0 | 0 | | Dalby | 0 | 6 | 0 | 1 | | Jandowae | 0 | 0 | 0 | 0 | | Miles | 0 | 3 | 0 | 0 | | Tara | 0 | 0 | 0 | 0 | | Wandoan | 0 | 0 | 0 | 0 | | Warra | 0 | 0 | 0 | 0 | | Total | 0 | 14 | 0 | 1 | # 8 DWQMP review outcomes All sections of the Drinking Water Quality Management Plan were reviewed during 2022-2023. ## 9 DWQMP audit outcomes No audit was conducted or needed during the reporting period 01/07/2022 - 30/06/2023.